LCSR results for B_s semileptonic decays

Alexander Khodjamirian

LHCb implication workshop, CERN, October 21, 2021 (online)

• QCD light-cone sum rule for a $F^{B \to h}(q^2)$ form factor, a general scheme:

- two different versions of LCSRs:
 - $\ast\,$ with light-meson DAs, $\textbf{\textit{h}}=\pi,\textbf{\textit{K}},\rho,\omega,\phi,...,\,\textbf{\textit{m}}_{b}$ finite,
 - * with $B_{(s)}$ meson DAs, defined in HQET
- both types of LCSRs valid at $q^2 \ll (m_B m_h)^2$ (large recoil of h)

LCSRs for $B_s \rightarrow h$ form factors

- O(m_s) effects taken into account
 (e.g. odd Gegenbauer moments in DAs or explicitly in the perturbative part)
- schematic expressions of the sum rules:
 - * with light meson DAs, $h = K, K^*, \phi$

M²-Borel parameter

$$F^{B_{s} \to h}(q^{2}) = \frac{e^{m_{B_{s}}^{2}/M^{2}}}{f_{B_{s}}} \int_{(m_{b}+m_{s})^{2}}^{s_{0}^{B_{s}}} ds \, e^{-s/M^{2}} \rho^{(h-DA)}(s,q^{2},m_{b})$$

* with B_s -meson DAs,

$$F^{B_s \to h}(q^2) = rac{e^{m_h^2/M^2}}{f_h} \int\limits_{m_s^2}^{s_0^h} ds \ e^{-s/M^2}
ho^{(B_s - DA)}(s, q^2, m_s)$$

- in what follows:
 - * $B_s \rightarrow K$ form factors used in $B_s \rightarrow K \mu \nu_{\mu}$;
 - * $B_s
 ightarrow \phi \ell^+ \ell^-$, the nonlocal effects ("charm loop")

 $B_s \rightarrow K$ form factors from LCSR

• LCSR with kaon DAs, [AK, A.Rusov,1703.04765]

* the integrated form factor squared:

$$\Delta\zeta_{B_{s}K}\left[0,q_{0}^{2}\right] \equiv \frac{G_{F}^{2}}{24\pi^{3}} \int_{0}^{q_{0}^{2}} dq^{2} p_{B_{s}K}^{3} |f_{B_{s}K}^{+}(q^{2})|^{2} = \frac{1}{|V_{ub}|^{2} \tau_{B_{s}}} \int_{0}^{q_{0}^{2}} dq^{2} \frac{dB(\bar{B}_{s} \to K^{+}\ell\bar{\nu}_{\ell})}{dq^{2}} ,$$

* $\Delta \zeta_{B_s \kappa}$ [0,7.0GeV²] was used by LHCb (PRL 126, 081804 (2021) to determine $|V_{ub}|/|V_{cb}|$ from the first measurement of $B_s \rightarrow K \mu \nu$

• A closer look at the K-DA sum rule:

$$F^{B_s \to K}(q^2) = \frac{e^{m_{B_s}^2/M^2}}{f_{B_s}} \int_{(m_b + m_s)^2}^{s_0^{B_s}} ds \, e^{-s/M^2} \rho^{(K-DA)}(s, q^2, m_b, m_s)$$

* the twist expansion in kaon DAs up to twist 6, the leading tw2,tw3 perturbative kernels to $O(\alpha_s)$

the same level of accuracy as in LCSRs for $B \to \pi$ form factors

- * we use 2-point QCD sum rule result $f_{B_s} = 222^{+35}_{-21}$ MeV, cf FLAG $N_f = 4$ average $f_{B_s} = 230.3 \pm 1.3$ MeV
- * quark-hadron duality: B_s mass fixing from LCSR, B^*K threshold
- * switch to charm: e.g., LCSR: $f_{D\to K}^+(0) = 0.75_{-0.08}^{+0.11}$ [AK, C. Klein, T.Mannel, N.Offen, 0907.2842] cf FLAG average $f_{D\to K}^+(0) = 0.765 \pm 0.031$
- * counting uncertainties and correlations with Bayesian analysis for $B \rightarrow \pi$ pion-DA LCSR [I.S. Imsong, AK, T.Mannel and D.van Dyk, 1409.7816].
- not done yet: $B_s \rightarrow K$ form factor from B_s -DA LCSR recent estimate of the inverse moment of B_s DA [AK, R. Mandal, T. Mannel, 2008.03935].

$B_s \rightarrow \phi$ form factors

- LCSR with ϕ -meson DAs [A.Bharucha, D.M.Straub, R.Zwicky, [1503.05534].
 - * up to twist 5 accuracy, NLO ${\it O}(lpha_{s})$ for tw2, tw3
 - * impact of EOM
 - * z-expansion
- not yet done: to convert to LCSR for the $D_s
 ightarrow \phi$ form factors
- LCSR with B_s-meson DAs [N. Gubernari, D. van Dyk and J. Virto, 2011.09813]
 - * up to twist 5 accuracy
 - * including full three-particle B_s DAs
 - * z-expansion
 - * $O(\alpha_s)$ not included calculated for $B \rightarrow \pi$ LCSRs in [Y,-M. Wang, Y.-L. Shen (2015)]
 - * still large uncertainties of the input parameters of $B_{(s)}$ DA

Local $B_s \to \phi$ form factors	This work	Ref. [36]
$V(q^2 = 0)$	0.387 ± 0.111	0.387 ± 0.033
$A_0(q^2 = 0)$	0.372 ± 0.070	0.389 ± 0.045
$A_1(q^2 = 0)$	0.304 ± 0.080	0.296 ± 0.027
$T_1(q^2 = 0)$	0.339 ± 0.093	0.309 ± 0.027
$T_{23}(q^2 = 0)$	0.651 ± 0.115	0.676 ± 0.071

• Factorizable contributions: perturbative part \times $B_s \rightarrow h$ form factor

 \otimes -virtual photon

- Nonfactorizable contributions
 - * hard spectator scattering

QCD factorization

[M.Beneke, T.Feldmann, D.Seidel, hep-ph/0412400].

- [H.M.Asatrian, C.Greub, J.Virto, 1912.09099].
- * soft (low virtuality) gluons

B-DA LCSR

• Calculate at spacelike q^2 and match to the hadronic dispersion relations (with J/ψ , $\psi(2S)$ and light-vector resonances)

 $B_s \rightarrow \phi \ell^+ \ell^-$

- SM prediction based on [A. Bharucha, D. M. Straub and R. Zwicky, 1503.05534]. * LCSR with ϕ -meson DAs: form factors, factorizable nonlocal effects
 - * soft nonfactorizable effects linearly parameterized, using also LCSR results for $B_s \rightarrow \phi \gamma$ [P.Ball, G.W.Jones,R.Zwicky, hep/ph/0612081] * branching fraction, F_L and S_4 predicted at $1.1 < q^2 < 6.0 \text{ GeV}^2$
 - $B_s \rightarrow \phi$ -channel has an advantage due to small width of ϕ
- New updated soft gluon emission calcalation with *B*-DA LCSR predicts a very small effect [N. Gubernari, D. van Dyk and J. Virto, 2011.09813]
- A task for future: all nonfactorizable effects (hard spectator scattering, soft gluons, annihilation) in the LCSR framework with ϕ meson DAs, matching to dispersion relation;

 $B_s
ightarrow \phi J/\psi$, $B_s
ightarrow \phi \psi(2S)$ decay parameters as an input

• Conclusion: LCSRs in two different versions will serve a useful tool for counting the nonlocal effects in the exclusive FCNC *B* decays