Rescattering contributions to $\overline{B}_{(s)} \to D_{(s)}^{(*)} M$

Implications of LHCb measurements and future prospects 2021

arXiv:2109.10811 in collaboration with M. Endo and S. Mishima arXiv:2008.01086 in collaboration with T. Kitahara

There are interesting anomalies in B physics

There are interesting anomalies in B physics

We also have coherent deviations in hadronic 2-body B meson decays

	$BR^{exp} \times 10^3$	$BR^{SM,QCDF} \times 10^3$	
$\overline{B}_s \to D_s^+ \pi^-$	3.00 ± 0.23	4.09 ± 0.21	<u>3.5σ</u>
$\overline{B}^0 \to D^+ K^-$	0.186 ± 0.020	0.303 ± 0.015	<u>4.7σ</u>
$\overline{B}_s \to D_s^{*+} \pi^-$	2.0 ± 0.5	4.46 ± 0.22	<u>4.5σ</u>
$\overline{B}^0 \to D^{*+}K^-$	0.212 ± 0.015	0.327 ± 0.016	<u>5.3σ</u>
	PDG	2109.10811	

h Saua puzzla

Tree level W exchange

See also Bordone et al 2007.10338, Cai et al 2103.04138, Fleischer et al 2109.04950 for SM predictions. BaBar, Belle, LHCb are consistent.

Color allowed $B \rightarrow D^{(*)}M$ within the SM

The decays are described by

$$\begin{aligned} \mathcal{H}_W &= \frac{4G_F}{\sqrt{2}} \sum_{q=d,s} V_{cb} V_{uq}^* \left(C_1 \mathcal{O}_1^q + C_2 \mathcal{O}_2^q \right) + \text{h.c.}, \\ \mathcal{O}_1^q &= \left(\bar{c} \gamma^\mu T^a P_L b \right) \left(\bar{q} \gamma_\mu T^a P_L u \right), \\ \mathcal{O}_2^q &= \left(\bar{c} \gamma^\mu P_L b \right) \left(\bar{q} \gamma_\mu P_L u \right), \\ \text{with } \mathcal{C}_1(m_h) \sim -0.3, \mathcal{C}_2(m_h) \sim 1 \end{aligned}$$

Color- suppressed, Penguin nor Exchange diagrams contribute since the involving quarks are all different.

Theoretically clean

$$A(\bar{B} \to D^{+}K^{-}) = \frac{G_{F}V_{us}^{*}V_{cb}}{\sqrt{2}}(C_{1}\langle D^{+}K^{-}|O_{1}|\bar{B}\rangle + C_{2}\langle D^{+}K^{-}|O_{2}|\bar{B}\rangle)$$

The non factorizable soft gluon exchange contribution between BD system and K is suppressed. *Bjorken (89)* Soft collinear effective theory shows the contribution is absent at $1/m_b^0$ Bauer et al. 0107002

$$=\frac{i G_F V_{us}^* V_{cb}}{\sqrt{2}} (m_B^2 - m_D^2) a_1 (D^+ K^-) f_K F_0^{B \to D} (m_K^2)$$

 $a_1(D^+K^-)$ is calculated in pQCD at NNLO. See also Beneke et al 2107.03819 for QED correction

$$a_1(D^+K^-) = (1.069^{+0.009}_{-0.012}) + (0.046^{+0.023}_{-0.015})i$$
 Huber et al, 1606.02888

 $V_{cb} \times F_0^{B \to D}(m_K^2)$: LCSR, Belle data, QCDSR, Lattice Iguro Watanabe 2004.10208. LCSR dominance at $q^2 = m_K^2$ Uncertainty in f_K is negligible (Lattice)

Factorization amplitude for B->D*P , B->DV can be calculated in a similar way

Current situation

0	$BR^{exp} \times 10^3$	$BR^{SM,QCDF} \times 10^3$	
$\overline{B}_s \to D_s^+ \pi^-$	3.00 ± 0.23	4.09 ± 0.21	<u>3.5σ</u>
$\overline{B}^0 \to D^+ K^-$	0.186 ± 0.020	0.303 ± 0.015	<u>4.7σ</u>
$\overline{B}_s \to D_s^{*+} \pi^-$	2.0 ± 0.5	4.46 ± 0.22	<u>4.5σ</u>
$\overline{B}^0 \to D^{*+} K^-$	0.212 ± 0.015	0.327 ± 0.016	<u>5.3σ</u>
	PDG	2109.10811	

Theoretical uncertainty mainly comes from $V_{cb} \times FF$

10 - 30% smaller amplitude can explain the data.

What is missing ?

• *V*_{*cb*}, *B*-> *D*, *D** form factor?

We used the result from Iguro Watanabe 2004. 10208: V_{cb}^{exc} =0.0397(6),,,. Adopting $V_{cb}^{inc} > V_{cb}^{exc}$ makes the situation worse!

• NP effect? We discuss from the next page.

• $O(\Lambda_{QCD}/m_b)$ sub-leading power corrections ?

Expected to be small: O(0.1)% Bordone et al 2007.10338

- $O(\Lambda_{QCD}/m_b)$ chirality enhanced contribution is absent
- correction to LCDA is $O(\alpha_s \Lambda^2 / m_b^2)$
- Contribution from soft gluon exchange between BD system and light meson is small

NP possibilities?

In order to explain the discrepancy, O(10)% downward shift from the SM amplitude is necessary.

Interestingly such a large shift is still allowed by flavor observables. Lenz et al 1912.07621.

Model example Boucenna et al 1608.01349

 $g_{33}V_{ch}$

We need a charged mediator (for instance W', not LQ) The naïve NP scale for this puzzle is estimated as

$$\left|\frac{C_2^{NP}(\Lambda_{NP})}{C_2^{SM}}\right| \sim 10\% = \frac{g_{11} \times g_{33}}{M_V^2} \frac{1}{4\sqrt{2}G_F} = \frac{g_{11} \times g_{33}}{1} \frac{(400 \text{GeV})^2}{M_V^2}$$

This W' (also Z') couples to valence quark and LHC can easily test this scenario.

See also for other NP analyses, Bordone et al 2103.10332, Cai et al 2103.04138.

Other possibilities?

V_{cb}, *B-> D*, *D** form factor?
 We use the result from Iguro Watanabe 2004. 10208: *V^{exc}_{cb}=0.397(6),,,*.

Adopting $V_{cb}^{inc} > V_{cb}^{exc}$ makes the situation worse!

• NP effect?

Personally, it seems not easy!

• $O(\Lambda_{QCD}/m_b)$ sub-leading power corrections ?

Expected to be small: O(0.1)% Bordone et al 2007.10338

- $O(\Lambda_{QCD}/m_b)$ chirality enhanced contribution is absent
- correction to LCDA is $O(\alpha_s \Lambda^2 / m_b^2)$
- Contribution from soft gluon exchange between BD system and light meson is small

• Other power suppressed correction to QCDF?

In reality, bottom mass is finite.

In this work we tested meson-meson scattering contribution.

Quasi-elastic rescattering $\frac{B}{M} = \sum_{M_1, M_2} \frac{B}{M_2} = M^1$

M1, M2 are intermediate states.

The rescattering can occur among the final states with the same quantum number.

Chua et al 0112148, 0504084, 0712.1882

$$S_{\rm res}^{1/2} = e^{i\delta_{\overline{\mathbf{15}}}} \sum_{a=1}^{15} \left|\overline{\mathbf{15}};a\right| \langle \overline{\mathbf{15}};a\right| + e^{i\delta_{\mathbf{6}}} \sum_{b=1}^{6} \left|\mathbf{6};b\right\rangle \langle \mathbf{6};b\right| + \sum_{m,n=\overline{\mathbf{3}},\overline{\mathbf{3}}'} \sum_{c=1}^{3} \left|m;c\right\rangle \mathcal{U}_{mn}^{1/2} \left\langle n;c\right|$$

Quasi-elastic rescattering $\frac{B}{M} = \sum_{M_1, M_2} \frac{M_1}{M_2} = M_1$

M1, M2 are intermediate states.

The rescattering can occur among the final states with the same quantum number.

Chua et al 0112148, 0504084, 0712.1882

This contribution is expected to be small for $B \rightarrow M_l M_{l'}$ (M_l : light meson). They fly apart immediately after the B decay (5GeV) and they can not communicate.

In $B \rightarrow DM_l$ decays D is not light, and then the effect might be not negligible

This effect is negligible in large m_b limit, but m_b is finite in reality.

Our question

How the situation can be relaxed including this rescattering effects ?

Tensions in color allowed and suppressed modes

Even if we take a_2 and δ' as free parameters,

we can not explain both color allowed and suppressed modes simultaneously

a1 fit in color allowed and suppressed modes

Last page: SM + rescattering can not explain the data

How large NP contribution to a_1 is favored?

 $a_1(m_b)^{fit} < a_1(m_b)$ is observed!

There is parametric redundancy and large a_2 is not easy to accept (power suppressed).

We will perform the global fit using the available modes

a_1 fit result for B -> DP

Assuming SU(3) flavor symmetry we performed the global fit

Transition	$\{S, I_z\}$	Mode	Amplitude	Data
$b \to c \bar{u} d$	$\{1, -1\}$	$\overline{B}_s \to D_s^+ \pi^-$	T_D	30.0 ± 2.3
		$\overline{B}_s \to D^0 K^0$	C_P	4.3 ± 0.9
	$\{0, -3/2\}$	$B^- \to D^0 \pi^-$	$T_D + C_P$	46.8 ± 1.3
	$\{0, -1/2\}$	$\overline{B}^0 \to D^+ \pi^-$	$T_D + E$	25.2 ± 1.3
		$\overline{B}^0 \to D^0 \pi^0$	$\frac{1}{\sqrt{2}}(-C_P + E)$	2.63 ± 0.14
		$\overline{B}{}^0 \to D^0 \eta$	$\frac{c_{\phi}}{\sqrt{2}}(C_P + E)$	2.36 ± 0.32
		$\overline{B}{}^0 \to D^0 \eta'$	$\frac{s_{\phi}}{\sqrt{2}}(C_P + E)$	1.38 ± 0.16
		$\overline{B}^0 \to D_s^+ K^-$	E	0.27 ± 0.05
$b \to c \bar{u} s$	$\{-1, 0\}$	$\overline{B}^0 \to D^+ K^-$	T_D	1.86 ± 0.20
		$\overline{B}^0 \to D^0 \overline{K}^0$	C_P	0.52 ± 0.07
	$\{-1, -1\}$	$B^- \to D^0 K^-$	$T_D + C_P$	3.63 ± 0.12
	$\{0, -1/2\}$	$\overline{B}_s \to D_s^+ K^-$	$T_D + E$	$2.27\pm0.19^{\dagger}$
		$\overline{B}_s \to D^0 \eta$	$-s_{\phi}C_P + \frac{c_{\phi}}{\sqrt{2}}E$	_
		$\overline{B}_s \to D^0 \eta'$	$c_{\phi}C_P + \frac{s_{\phi}}{\sqrt{2}}E$	_
		$\overline{B}_s \to D^0 \pi^0$	$\frac{1}{\sqrt{2}}E$	
		$\overline{B}_s \rightarrow D^+ \pi^-$	Ē	_

we consider rescattering effect, O(10)% shift in a₁(m_b) is favored

a_1 fit result for B -> D*P, B -> DV

 $\Delta a_1 = O(10)\%$ is again favored

In B-> DV case, U(3) symmetry allows us to reduce the rescattering parameters. There are two fit scenarios however, both of them favored the mild shift.

Even if we consider rescattering effect, O(10)% shift in $a_1(m_b)$ is favored

Summary

There are also coherent discrepancies in B->DM.

The QCDF predictions are larger than the experimental values.

The new physics explanation looks not easy since new particle couples to valence quarks significantly.

We studied whether the quasi-elastic rescattering can explain those deviations or not.

We found rescattering can not explain color allowed and color suppressed decays simultaneously. Even if we consider rescattering effect, O(10)% sift in $a_1(m_b)$ is favored

Further theoretical input and experimental data are necessary. For instance Lattice constraints on form factor at non-zero recoil is nice.

B -> DP full correlation

B -> D*P

Transition	$\{S, I_z\}$	Mode	Amplitude	Data
$b \to c \bar{u} d$	$\{1, -1\}$	$\overline{B}_s ightarrow D_s^{*+} \pi^-$	T_D	20 ± 5
		$\overline{B}_s \to D^{*0} K^0$	C_P	2.8 ± 1.1
	$\{0, -3/2\}$	$B^- \to D^{*0} \pi^-$	$T_{D^*} + C_P$	49.0 ± 1.7
	$\{0, -1/2\}$	$\overline{B}^0 \to D^{*+} \pi^-$	$T_{D^*} + E$	27.4 ± 1.3
		$\overline{B}^0 o D^{*0} \pi^0$	$\frac{1}{\sqrt{2}}(-C_P + E)$	2.2 ± 0.6
		$\overline{B}^0 o D^{*0} \eta$	$\frac{c_{\phi}}{\sqrt{2}}(C_P+E)$	2.3 ± 0.6
		$\overline{B}{}^0 \to D^{*0} \eta'$	$\frac{s_{\phi}}{\sqrt{2}}(C_P+E)$	1.40 ± 0.22
		$\overline{B}^0 \to D_s^{*+} K^-$	E	0.22 ± 0.03
$b \to c \bar{u} s$	$\{-1, 0\}$	$\overline{B}^0 \to D^{*+} K^-$	T_{D^*}	2.12 ± 0.15
		$\overline{B}{}^0 \to D^{*0} \overline{K}{}^0$	C_P	0.36 ± 0.12
	$\{-1, -1\}$	$B^- \to D^{*0} K^-$	$T_{D^*} + C_P$	$3.97\substack{+0.31 \\ -0.28}$
	$\{0, -1/2\}$	$\overline{B}_s ightarrow D_s^{*+} K^-$	$T_{D^*} + E$	$1.33\pm0.35^{\dagger}$
		$\overline{B}_s \to D^{*0} \eta$	$-s_{\phi} C_P + \frac{c_{\phi}}{\sqrt{2}} E$	_
		$\overline{B}_s \to D^{*0} \eta'$	$c_{\phi} C_P + \frac{s_{\phi}}{\sqrt{2}} E$	
		$\overline{B}_s \to D^{*0} \pi^0$	$\frac{1}{\sqrt{2}}E$	· ·
		$\overline{B}_s ightarrow D^{*+} \pi^-$	E	· · · · ·

B ->	DV
------	----

Transition	$\{S, I_z\}$	Mode	Amplitude	Data
$b \to c \bar{u} d$	$\{1, -1\}$	$\overline{B}_s \to D_s^+ \rho^-$	T_D	69 ± 14
		$\overline{B}_s \to D^0 K^{*0}$	C_V	4.4 ± 0.6
	$\{0, -3/2\}$	$B^- ightarrow D^0 ho^-$	$T_D + C_V$	134 ± 18
	$\{0, -1/2\}$	$\overline{B}^0 \to D^+ \rho^-$	$T_D + E$	76 ± 12
		$\overline{B}^0 o D^0 ho^0$	$\frac{1}{\sqrt{2}}(-C_V+E)$	3.21 ± 0.21
		$\overline{B}{}^0 \to D^0 \omega$	$\frac{1}{\sqrt{2}}(C_V + E)$	2.54 ± 0.16
		$\overline{B}^0 \to D^0 \phi$	0	
		$\overline{B}^0 \to D_s^+ K^{*-}$	E	0.35 ± 0.10
$b \to c \bar{u} s$	$\{-1,0\}$	$\overline{B}^0 \to D^+ K^{*-}$	T_D	4.5 ± 0.7
		$\overline{B}^0 \to D^0 \overline{K}^{*0}$	C_V	0.45 ± 0.06
	$\{-1, -1\}$	$B^- \to D^0 K^{*-}$	$T_D + C_V$	5.3 ± 0.4
	$\{0, -1/2\}$	$\overline{B}_s \to D_s^+ K^{*-}$	$T_D + E$	
		$\overline{B}_s ightarrow D^0 \phi$	$-C_V$	0.30 ± 0.05
		$\overline{B}_s \to D^0 \omega$	$\frac{1}{\sqrt{2}}E$	
		$\overline{B}_s \to D^0 \rho^0$	$\frac{1}{\sqrt{2}}E$	
		$\overline{B}_s ightarrow D^+ ho^-$	E	