y measurement and combination at LHCb

Federico Betti on behalf of the LHCb collaboration

Implications of LHCb measurements and future prospects

CERN – 22 October 2021

Introduction

- γ standard candle of SM
- Comparison between direct and indirect γ determinations is a test of SM
- γ measured in tree-level B decays that are theoretically clean
- SM uncertainties negligible $\sim (10^{-5})^{\circ \text{JHEP 01 (2014) 051}}$
- New Physics can cause $O(10^\circ)$ shift to $\gamma \frac{\text{PRD 92}(2015) 033002}{\text{JHEP 07}(2020) 177}$

2

 $\gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{ch}^*}\right)$

Measuring γ

- $b \rightarrow uW$ transition amplitudes
- Golden modes: $B^{\pm} \rightarrow DK^{\pm}$
- Various methods according to D final state
 - GLW: *CP* eigenstates (e.g. *KK*, $\pi\pi$)
 - ADS: interference of CF and DCS transitions (e.g. $K\pi$)
 - BPGGSZ: 3-body final states (e.g. $K_s^0 \pi \pi$)
- Time-dependent analyses of $B_{(s)}^0$ are also used

• γ measured in tree-level decays sensitive to interference between $b \rightarrow cW$ and

Previous status of γ

Unitarity constrained results: $\frac{CKMfitter}{\gamma = (65.7^{+0.9}_{-2.7})^{\circ}}$

LHCb-CONF-2018-002

Federico Betti on behalf of LHCb

Implications workshop 2021 - 22/10/2021

4

$\frac{\text{UTFit}}{\gamma = (65.8 \pm 2.2)^{\circ}}$

 $\gamma = (74.4^{+5.0}_{-5.8})^{\circ}$

 $B^- \to Dh^-, D \to K_{\rm s}^0 h^+ h^-$

- inputs from CLEO and BESIII

•
$$\gamma = (68.7^{+5.2}_{-5.1})^{\circ}$$

Federico Betti on behalf of LHCb

$B^- \rightarrow D^{(*)}h^-, D \rightarrow h^+h^{\prime-}$

- Update with full Run 1 + Run 2
- Partial reconstruction method for $D^* \rightarrow D^0 \pi^0, D^0 \gamma$
- First observation of ADS $B^- \to (D\pi^0)_{D^*}\pi^-$
- $\gamma = (61.80 \pm 4.0)^\circ$ when combined with $K_{\rm s}^0 h^+ h^-$ result

Federico Betti on behalf of LHCb

Implications workshop 2021 - 22/10/2021

(4.0 MeV)

$B_{\rm s}^0 \to D_{\rm s}^{\mp} K^{\pm} \pi^{+} \pi^{-}, D_{\rm s}^{+} \to h^{+} h^{-} \pi^{+}$

JHEP 03 (2021) 137

- New measurement with full Run 1 + Run 2
- Time-dependent amplitude analysis, takes $\phi_{\rm c}$ as external input
- Less precise model-independent analysis
- $B_s^0 \rightarrow D_s^- \pi^+ \pi^+ \pi^-$ used as calibration
- $\gamma = (44^{+20}_{-13})^{\circ}$ modulo 180° with modelindependent approach
- $\gamma = (44 \pm 12)^\circ$ modulo 180° with time-dependent amplitude analysis

Other decay modes

- Recent measurements with full Run 1 + Run 2:
 - A_{CP} of $\Lambda_b^0 \to [K\pi]_D pK^-$ Search for $B_c^+ \to D_{(s)}^{(*)+} D^{(*)}$
- Potential to be sensitive to γ with future runs

Federico Betti on behalf of LHCb

Implications workshop 2021 - 22/10/2021

LHCb γ + charm combination

- input from HFLAV
- $B^{\pm} \to DK^{\pm}$ with $D \to K^{\pm}\pi^{\mp}$ are sensitive to $\delta_D^{K\pi}$, if x_D , y_D and $r_D^{K\pi}$ are taken as input $2r_B^K r_D^{K\pi} \sin\left(\delta_B^K - \delta_D^{K\pi}\right) \sin\gamma$ $2r_B^K r_D^{K\pi} \cos\left(\delta_B^K - \delta_D^{K\pi}\right) \cos\gamma$

$$A_{\text{fav}}^{K\pi} = \frac{2r_B^{\Lambda}r_D^{\Lambda\pi}}{1 + (r_B^K r_D^{K\pi})^2 + 1}$$

parameters

 \Rightarrow 8 charm measurements are included

• In the past, charm parameters $(x_D, y_D, \delta_D^{K\pi}, r_D^{K\pi})$ have been taken as external

 \Rightarrow best option is to combine LHCb charm+beauty results to constrain all four

LHCb γ + charm combination

$$\frac{\Gamma(D^0 \to K^+ \pi^-, t)}{\Gamma(D^0 \to K^- \pi^+, t)} \approx (r_D^{K\pi})^2$$

- y_D
- effects on $B^{\pm} \rightarrow D\pi^{\pm}$

Federico Betti on behalf of LHCb

• In charm measurements of $D^0 \to K^+ \pi^-$ to $D^0 \to K^- \pi^+$ ratio, y_D and $\delta_D^{K\pi}$ are highly correlated \Rightarrow the charm+beauty combination improves precision on

• Further motivation to include charm measurements: D mixing has significant

LHCb γ + charm combination

- 7 new/updated beauty measurem
- 151 observables
- 52 free parameters
- Frequentist treatment (Plugin met
- Cross-checked with Bayesian framework

arXiv:2110.02350

Federico Betti on behalf of LHCb

	R doory	D door	Pof	Deteget	Statu
	D decay	D decay	nei.	Dataset	D
			-		Ref.
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^-$	27	Run 1&2	Upd
nents	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	28	Run 1	As be
	$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	29	Run 1	As be
	$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	26	Run $1\&2$	Upd
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$	30	Run $1\&2$	Upd
	$B^\pm o D^* h^\pm$	$D ightarrow h^+ h^-$	27	Run 1&2	Upd
	$B^\pm \to D K^{*\pm}$	$D ightarrow h^+ h^-$	31	Run 1&2(*)	As be
	$B^\pm \to D K^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	31	Run 1&2(*)	As be
	$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^+ h^-$	32	Run 1	As be
	$B^0 \to DK^{*0}$	$D \rightarrow h^+ h^-$	33	Run 1&2(*)	Upd
hod)	$B^0 \to D K^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	33	Run 1&2(*)	New
	$B^0 \to DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	34	Run 1	As be
	$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[35]	Run 1	As be
	$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D^+_s ightarrow h^+ h^- \pi^+$	36	Run 1	As be
	$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[37]	Run 1&2	New
	_	$D^0 ightarrow h^+ h^-$	[38-40]	Run 1&2	New
	_	$D^0 ightarrow h^+ h^-$	41	Run 1	New
	_	$D^0 ightarrow h^+ h^-$	42 - 45	Run 1&2	New
	_	$D^0 \to K^+ \pi^-$	46	Run 1	New
	_	$D^0 \to K^+ \pi^-$	47	Run 1&2(*)	New
	_	$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	48	Run 1	New
	_	$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	[49, 50]	Run 1&2	New
	_	$D^0 ightarrow K_{ m S}^{ m 0} \pi^+ \pi^-$	51	Run 1	New

Auxiliary inputs

External constraints needed for hadronic parameters and coherence factors in multibody B and D decays $\frac{arXiv:2110.02350}{2}$

Decay	Parameters	Source	Ref.	Status since
				Ref. 24
$B^\pm \to DK^{*\pm}$	$\kappa^{DK^{st\pm}}_{B^\pm}$	LHCb	[31]	As before
$B^0 \to DK^{*0}$	$\kappa^{DK^{st 0}}_{B^0}$	LHCb	[52]	As before
$B^0 \to D^{\mp} \pi^{\pm}$	eta	HFLAV	[18]	Updated
$B^0_s \to D^{\mp}_s K^{\pm}(\pi\pi)$	ϕ_s	HFLAV	[18]	Updated
$D \to h^+ h^- \pi^0$	$F^+_{\pi\pi\pi^0},F^+_{K\pi\pi^0}$	CLEO-c	[53]	As before
$D \to \pi^+\pi^-\pi^+\pi^-$	$F^+_{4\pi}$	CLEO-c	[53]	As before
$D \to K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0},\delta_D^{K\pi\pi^0},\kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[48, 54-56]	Updated
$D \to K^\pm \pi^\mp \pi^+ \pi^-$	$r_D^{K3\pi},\delta_D^{K3\pi},\kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[48, 54-56]	Updated
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_{D}^{K_{ m S}^{0}K\pi},\delta_{D}^{K_{ m S}^{0}K\pi},\kappa_{D}^{K_{ m S}^{0}K\pi}$	CLEO	[57]	As before
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_D^{K_{ m S}^0K\pi}$	LHCb	[58]	As before

Federico Betti on behalf of LHCb

Implications workshop 2021 - 22/10/2021

Results

- Excellent precision on γ
- Agreement with indirect global CKM fitters: $\gamma = (65.7^{+0.9}_{-2.7})^{\circ}$ $\gamma = (65.8 \pm 2.2)^{\circ}$

New world average: $\gamma = (\gamma = (\gamma = 1))$

Federico Betti on behalf of LHCb

Implications workshop 2021 - 22/10/2021

CKMfitter <u>UTFit</u>

$$(66.2^{+3.4}_{-3.6})^{\circ}$$

Breakdowns

Combinations for different *B* species

Species	Value [°]	$68.3\%~\mathrm{CL}$		
species		Uncertainty	Interval	
B^+	61.7	$\substack{+4.4\\-4.8}$	[56.9, 66.1]	
B^0	82.0	$^{+8.1}_{-8.8}$	$\left[73.2,90.1\right]$	
B^0_s	79	$^{+21}_{-24}$	[55,100]	

Federico Betti on behalf of LHCb

Breakdowns

Combinations for different *D* decays for most sensitive modes

Federico Betti on behalf of LHCb

Implications workshop 2021 - 22/10/2021

Breakdowns

Complementarity of beauty and charm on charm parameters

Precision on $\delta_D^{K\pi}$ and y_D improved by almost a factor 2

Federico Betti on behalf of LHCb

arXiv:2110.02350

$B^- \rightarrow Dh^-, D \rightarrow h^+h^-\pi^0$

- Update with full Run 1 + Run 2
- Quasi-ADS and quasi-GLW modes \Rightarrow use dilution factors taken from external inputs
- Observation of suppressed $B^- \rightarrow [\pi^- K^+ \pi^0]_D K^-$ with more than 7σ significance

Implications workshop 2021 - 22/10/2021

$B^- \rightarrow Dh^-, D \rightarrow h^+h^-\pi^0$

- Global minimum at $\gamma = (145^{+9}_{-39})^\circ$
- Second solution consistent with combination $\begin{bmatrix} 180 \\ 9 \end{bmatrix}$ Preliminary $\gamma = (56^{+24}_{-19})^{\circ}$ $140 \cdot$ $\delta_B = (122^{+19}_{-23})^{\circ}$ 120 $r_B = (9.25^{+1.04}_{-0.85}) \times 10^{-2}$ 100-
- This result will be used in future combinations

25

80-

Federico Betti on behalf of LHCb

Future prospects

- Sensitivity of $B^0 \rightarrow [K_s^0 h^+ h^-]_D K^+ \pi$ increase by a factor 2 with Run 2 dat
- Upgrades will be fundamental to increase precision on γ

• Other $B \to Dh$ measurements ongoing with Run 2 data (e.g. $B \to [K\pi\pi\pi]_Dh$)

$$T^-$$
 and $B_s^0 \to D_s^{\mp} K^{\pm}$ is expected to ta

Implications workshop 2021 - 22/10/2021

Conclusions

- Many recent results by LHCb with full data sample to determine γ
- LHCb combination: $\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$
- New measurements and updates with Run 2 data still ongoing
- LHCb upgrades aim for $< 1^{\circ}$ precision on γ

Implications workshop 2021 - 22/10/2021

Assumptions

- $K^0 \overline{K}^0$ mixing
 - For D → K⁰_sh⁺h⁻: O(10⁻³) relative shift on γ, also taken into account in systematics
 For D → K⁰_sK[±]π[∓]: larger effect, but sensitivity of the related measurement to γ is low
- Assume U-spin symmetry when considering CP violation in $D \rightarrow h^+h^-$ in the beauty sector: 0.3° effect
- Neglect *CP* violation in charm mixing in beauty sector: 0.1° effect
- Correlation of systematics between measurements: negligible effect because the combination is statistically dominated $(3.3^{\circ} \text{ out of } 3.6^{\circ})$

Results

Quantita	Value	68.3% CL		95.4% CL		
Quantity	varue	Uncertainty	Interval	Uncertainty	Interval	
γ [°]	65.4	$^{+3.8}_{-4.2}$	[61.2, 69.2]	$^{+7.5}_{-8.7}$	[56.7, 72.9]	
$r_{B^{\pm}}^{DK^{\pm}}$	0.0984	$^{+0.0027}_{-0.0026}$	[0.0958, 0.1011]	$^{+0.0056}_{-0.0052}$	[0.0932, 0.1040]	
$\delta^{DK^{\pm}}_{B^{\pm}}$ [°]	127.6	$^{+4.0}_{-4.2}$	[123.4, 131.6]	$^{+7.8}_{-9.2}$	[118.4, 135.4]	
$r_{B^{\pm}}^{D\pi^{\pm}}$	0.00480	$+0.00070 \\ -0.00056$	[0.00424, 0.00550]	$^{+0.0017}_{-0.0011}$	[0.0037, 0.0065]	
$\delta^{D\pi^{\pm}}_{B^{\pm}}$ [°]	288	$^{+14}_{-15}$	[273, 302]	$^{+26}_{-31}$	[257, 314]	
$r_{B^{\pm}}^{D^*K^{\pm}}$	0.099	$^{+0.016}_{-0.019}$	[0.080, 0.115]	$^{+0.030}_{-0.038}$	[0.061, 0.129]	
$\delta^{D^*K^\pm}_{B^\pm}$ [°]	310	$^{+12}_{-23}$	[287, 322]	$^{+20}_{-71}$	[239, 330]	
$r_{B^{\pm}}^{D^{*}\pi^{\pm}}$	0.0095	$^{+0.0085}_{-0.0061}$	[0.0034, 0.0180]	$^{+0.017}_{-0.0089}$	[0.0006, 0.026]	
$\delta^{D^*\pi^{\pm}}_{B^{\pm}}$ [°]	139	$^{+22}_{-86}$	[53, 161]	$^{+32}_{-129}$	[10, 171]	
$r_{B^{\pm}}^{DK^{*\pm}}$	0.106	$^{+0.017}_{-0.019}$	[0.087, 0.123]	$^{+0.031}_{-0.040}$	[0.066, 0.137]	
$\delta_{B^{\pm}}^{DK^{*\pm}}$ [°]	35	$^{+20}_{-15}$	[20, 55]	$^{+57}_{-28}$	[7, 92]	
$r_{B^0}^{DK^{*0}}$	0.250	$^{+0.023}_{-0.024}$	[0.226, 0.273]	$^{+0.044}_{-0.052}$	[0.198, 0.294]	
$\delta_{B^0}^{DK^{*0}} \left[^\circ\right]$	197	$^{+10}_{-9.3}$	[187.7, 207]	$^{+24}_{-18}$	[179, 221]	
$r_{B_s^0}^{D_s^\mp K^\pm}$	0.310	$^{+0.098}_{-0.092}$	[0.218, 0.408]	$^{+0.20}_{-0.21}$	[0.10, 0.51]	

Federico Betti on behalf of LHCb

Implications workshop 2021 - 22/10/2021

Results

Quantity	Valuo	68.3% CL		95.4% CL		
Qualitity	varue	Uncertainty	Interval	Uncertainty	Interval	
$\delta_{B_{\circ}^{0}}^{D_{s}^{\mp}K^{\pm}}\left[^{\circ}\right]$	356	$^{+19}_{-18}$	[338, 375]	$^{+39}_{-39}$	[317, 395]	
$r_{B_s^0}^{D_s^{\mp}K^{\pm}\pi^{+}\pi^{-}}$	0.460	$^{+0.081}_{-0.084}$	[0.376, 0.541]	$^{+0.16}_{-0.17}$	[0.29, 0.62]	
$\delta_{B_{\circ}^{0}}^{D_{s}^{\mp}K^{\pm}\pi^{+}\pi^{-}}\left[^{\circ}\right]$	345	$^{+13}_{-12}$	[333, 358]	$^{+26}_{-25}$	[320, 371]	
$r_{B^0}^{D^\mp\pi^\pm}$	0.030	$^{+0.014}_{-0.012}$	[0.018, 0.044]	$^{+0.036}_{-0.028}$	[0.002, 0.066]	
$\delta^{D^{\mp}\pi^{\pm}}_{B^0}$ [°]	30	$^{+26}_{-37}$	[-7, 56]	$^{+45}_{-81}$	[-51, 75]	
$r_{B^{\pm}}^{DK^{\pm}\pi^{+}\pi^{-}}$	0.079	$^{+0.028}_{-0.034}$	[0.045, 0.107]	$^{+0.050}_{-0.079}$	$[0.000, 0.129]^*$	
$r_{B^{\pm}}^{D\pi^{\pm}\pi^{+}\pi^{-}}$	0.067	$^{+0.025}_{-0.029}$	[0.038, 0.092]	$^{+0.040}_{-0.067}$	$[0.000, 0.107]^*$	
x[%]	0.400	$^{+0.052}_{-0.053}$	[0.347, 0.452]	$^{+0.10}_{-0.11}$	[0.29, 0.50]	
y[%]	0.630	$^{+0.033}_{-0.030}$	[0.600, 0.663]	$^{+0.069}_{-0.058}$	[0.572, 0.699]	
$r_D^{K\pi}$	0.05867	$^{+0.00015}_{-0.00015}$	[0.05852, 0.05882]	$^{+0.00031}_{-0.00030}$	$\left[0.05837, 0.05898 ight]$	
$\delta_D^{K\pi}$ [°]	190.0	$^{+4.2}_{-4.1}$	[185.9, 194.2]	$^{+8.6}_{-8.3}$	[181.7, 198.6]	
q/p	0.997	$^{+0.016}_{-0.016}$	[0.981, 1.013]	$^{+0.033}_{-0.033}$	[0.964, 1.030]	
ϕ [°]	-2.4	± 1.2	[-3.6, -1.2]	± 2.5	[-4.9, 0.1]	
ΔA_{CP}	-0.00152	± 0.00029	$\left[-0.00181, -0.00123 ight]$	± 0.00058	$\left[-0.00210, -0.00094 ight]$	

Federico Betti on behalf of LHCb

Implications workshop 2021 - 22/10/2021

Input for $B^0 \to D^- \pi^+$

- Previously $r_R^{D^-\pi^+}$ was taken as external input from theory
- Now $r_R^{D^-\pi^+}$ is determined by the combination
- $r_R^{D^-\pi^+}$ found to be consistent with theoretical value
- γ totally unaffected by how $r_R^{D^-\pi^+}$ is treated

Federico Betti on behalf of LHCb

$B^- \rightarrow Dh^-, D \rightarrow h^+h^-\pi^0$

$R_{F+}^{KK\pi^0}$	—	1.021	\pm	0.079	\pm	0.
$R_{F+}^{\pi\pi\pi^0}$	—	0.902	\pm	0.041	\pm	0.
$A_K^{K\pi\pi^0}$	—	-0.024	\pm	0.013	\pm	0.
$A_K^{KK\pi^0}$	=	0.067	\pm	0.073	\pm	0.
$A_K^{\pi\pi\pi^0}$	=	0.109	\pm	0.043	\pm	0.
$A_{\pi}^{KK\pi^0}$	—	-0.001	\pm	0.019	\pm	0.
$A_{\pi}^{\pi\pi\pi^0}$	=	0.001	\pm	0.010	\pm	0.
R_K^+	=	0.0179	\pm	0.0024	\pm	0.
R_K^-	=	0.0085	\pm	0.0020	\pm	0.
R_{π}^+	=	0.00188	\pm	0.00027	\pm	0.
R_{π}^{-}	—	0.00227	\pm	0.00028	\pm	0.
$R_{ADS(K)}$	=	0.0127	\pm	0.0016	\pm	0.
$A_{\mathrm{ADS}(K)}$	=	-0.38	\pm	0.12	\pm	0.
$R_{ADS(\pi)}$	=	0.00207	\pm	0.00020	\pm	0.
$A_{ADS(\pi)}$	=	0.069	\pm	0.094	\pm	0.

Federico Betti on behalf of LHCb

NEW!

005 .004 .002 .003 .003 .002 .002 .0003 .0004 00005 00004 .0002 02.00003 .016,

LHCb-PAPER-2021-036 (in preparation)

$$R_{F+}^{KK\pi^{0}} \approx R_{K/\pi}^{KK\pi^{0}} / R_{K/\pi}^{K\pi\pi^{0}}, \qquad R_{F+}^{\pi\pi\pi^{0}} \approx R_{K/\pi}^{\pi\pi\pi^{0}}$$

$$A_{K}^{K\pi\pi^{0}} = \frac{\Gamma(B^{-} \to [K^{-}\pi^{+}\pi^{0}]_{D}K^{-}) - \Gamma(B^{+} \to [K^{+}\pi^{-}]_{D}K^{-}) + \Gamma(B^{+} \to [K^{+}\pi^{-}]_{D}K^{-}]_{D}K^{-} + \Gamma(B^{+} \to [hh\pi^{0}]_{D}H^{-}]_{D}K^{-}}$$

$$A_{F+(K)}^{hh\pi^{0}} = \frac{\Gamma(B^{-} \to [hh\pi^{0}]_{D}K^{-}) - \Gamma(B^{+} \to [hh\pi^{0}]_{D}H^{-}}{\Gamma(B^{-} \to [hh\pi^{0}]_{D}\pi^{-}) - \Gamma(B^{+} \to [hh\pi^{0}]_{D}H^{-}]_{T}}$$

$$A_{F+(\pi)}^{hh\pi^{0}} = \frac{\Gamma(B^{-} \to [hh\pi^{0}]_{D}\pi^{-}) - \Gamma(B^{+} \to [hh\pi^{0}]_{D}\pi^{-}}{\Gamma(B^{-} \to [hh\pi^{0}]_{D}\pi^{-}) + \Gamma(B^{+} \to [hh\pi^{0}]_{D}\pi^{-}}$$

$$R_{K}^{\mp} = \frac{\Gamma(B^{\mp} \to [\pi^{\mp}K^{\pm}\pi^{0}]_{D}K^{\mp})}{\Gamma(B^{\mp} \to [K^{\mp}\pi^{\pm}\pi^{0}]_{D}K^{\mp})},$$

$$R_{\pi}^{\mp} = \frac{\Gamma(B^{\mp} \to [\pi^{\mp}K^{\pm}\pi^{0}]_{D}\pi^{\mp})}{\Gamma(B^{\mp} \to [K^{\mp}\pi^{\pm}\pi^{0}]_{D}\pi^{\mp})}.$$

$$R_{ADS(h)} = \frac{\Gamma(B^{-} \to [\pi^{-}K^{+}\pi^{0}]_{D}h^{-}) + \Gamma(B^{-} \to [\pi^{-}K^{+}\pi^{-}]_{T}}{\Gamma(B^{-} \to [K^{-}\pi^{+}\pi^{0}]_{D}h^{-}) + \Gamma(B^{-} \to [K^{-}\pi^{+}\pi^{-}]_{T}}}.$$

$$A_{\text{ADS}(h)} = \frac{\Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-) - \Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-)}{\Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-) + \Gamma(B^- \to [\pi^- K^+ \pi^0]_D h^-)}$$

History of LHCb combinations

Federico Betti on behalf of LHCb

Implications workshop 2021 - 22/10/2021

v/c = 0001 - 00/10/00

