Prompt charged particle production in heavy-ion collisions

Óscar Boente García
21/10/2021
LHCb Implications Workshop

Instituto Galego de Física de Altas Enerxías - USC
Contact: oscar.boente@usc.es
Motivation: hadron production

- Hadron production in pp and pA collisions not well understood
- Most production driven by non-perturbative soft-QCD interactions: hadronization, DPS, …
- Predictions of Monte-Carlo generators largely disagree in LHCb acceptance

Impact in cosmic-ray physics:
- generators used to study the evolution of hadronic cascades from high-energy cosmic rays
- uncertainties limited by quality of generators
- unexplained excess in the number of muons that reach the Earth surface (arXiv:2105.06148v1)

Figure: CMS-TOTEM, $\sqrt{s} = 8$ TeV, $L = 45 \mu$b$^{-1}$
Motivation: CNM effects

- Charged hadron production in pA collisions influenced by cold nuclear matter (CNM) effects
- Baseline to study AA collisions and quark gluon plasma effects
- Perturbative QCD (pQCD) calculations are only possible for high p_T charged particles:
 - Description of shadowing/antishadowing in nuclear PDFs (nPDFs)
 - Study saturation of gluon density \rightarrow constrains in Color Glass Condensate (CGC) models
 - Are additional CNM effects not described by nPDFs?

Nuclear modification factor $\rightarrow R_{ppb}(\eta, p_T) = \frac{1}{A} \frac{d^2\sigma_{ppb}(\eta, p_T)/dp_Td\eta}{d^2\sigma_{pp}(\eta, p_T)/dp_Td\eta}$, $A = 208$
The LHCb detector

- Only LHC detector fully instrumented in $2 < \eta < 5$
- Minimum-bias datasets of pp and pPb collisions at different centre-of-mass energies
- Reverse beam directions in pPb:

p — Pb

Forward $\eta > 0$

Pb — p

Backward $\eta < 0$

Boost of nucleon-nucleon cms system: $\eta = \eta_{lab} - 0.465$

Figure from arXiv:2105.06148v1
LHCb \((x, Q^2)\) coverage

- Nuclear effects depend on \((x, Q^2)\) of the probed Pb parton

\[Q^2 \approx m^2 + p_T^2, \quad x \approx \frac{Q}{\sqrt{s_{NN}}} e^{-\eta} \]

\[m = 256 \text{ MeV}/c^2 \]

- LHCb can probe unprecedented Bjorken-\(x\) range:
 - forward, \(10^{-6} \lesssim x \lesssim 10^{-4}\)
 - backward, \(10^{-3} \lesssim x \lesssim 10^{-1}\)

- Possible access to saturation region in perturbative scale \(p_T > 1.5 \text{ GeV}/c\)

- Backward acceptance overlaps with \((x, Q^2)\) at central BRAHMS \((dAu)\) and backward PHENIX \((Au p)\)

Saturation region:

\[Q_{x,Pb}^2 \approx 0.26 A^{1/3} (x_0/x)^\lambda \text{ GeV}^2 \]

\[\lambda = 0.288 \]

\[x_0 = 3 \cdot 10^{-4} \]

\[A = 208 \]
Prompt charged particle production in pPb and pp.

Nuclear modification factor $\rightarrow R_{p$Pb$}(\eta, p_T) = \frac{1}{A} \frac{d^2\sigma_{pPb}(\eta, p_T)/dp_Td\eta}{d^2\sigma_{pp}(\eta, p_T)/dp_Td\eta}$, $A = 208$

- Prompt charged particles: long-lived particles (lifetime < 30 ps)
 - produced in primary interaction or without long-lived ancestors

- Long-lived charged particles: $\pi^-, K^-, p, e^-, \mu^-, \Xi^-, \Sigma^+, \Sigma^-, \Omega^-(+cc.)$

- Datasets at $\sqrt{s_{NN}} = 5$ TeV

- Measure R_{pPb$}$ in common η range

<table>
<thead>
<tr>
<th>Beam</th>
<th>Acceptance</th>
<th>Luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>$2 < \eta < 4.8$</td>
<td>3.49 ± 0.07 nb$^{-1}$</td>
</tr>
<tr>
<td>pPb</td>
<td>$1.6 < \eta < 4.3$</td>
<td>42.73 ± 0.98 µb$^{-1}$</td>
</tr>
<tr>
<td>Pbp</td>
<td>$-5.2 < \eta < -2.5$</td>
<td>38.71 ± 0.97 µb$^{-1}$</td>
</tr>
</tbody>
</table>
Analysis overview

- N_{ch} measured with long tracks, covering $p > 2 \text{ GeV/c}$, $0.2 < p_T < 8 \text{ GeV/c}$

- $N_{\text{ch}} = N_{\text{candidates}} \frac{P}{\varepsilon_{\text{reco}} \varepsilon_{\text{sel}}}$
 - $N_{\text{candidates}}$: selected long tracks
 - P: signal purity
 - $\varepsilon_{\text{reco}}$: reconstruction efficiency
 - ε_{sel}: selection efficiency

- **Background contributions:**
 - **Fake tracks**, reconstruction artifacts not produced by charged particles
 - **Secondary particles**: particles from
 - interactions with the detector material (e^- from γ conversions and hadrons from hadronic interactions)
 - daughters of long-lived particles (Λ^0, K_S^0, Σ^+ . . .)

Figure from *JINST 10 (2015) 02, P02007*
Analysis overview

Background description

- Background from fake tracks *specially important*
 - Increases with event occupancy, large contribution in Pbp
 - Contribution rises strongly with p_T

- Remove most background with a **tight track selection**

- **Selection efficiency** measured on data using a calibration sample of $\phi(1020) \rightarrow K^+K^-$ decays

- Remaining **background** estimated with simulation and corrected with data
 - use background-enriched proxy samples

Relative particle composition

- Reconstruction efficiency depends on **relative particle composition**

- **Charged particle composition** not yet measured in LHCb acceptance for pPb → use EPOS-LHC simulation validated with ALICE data ([Phys. Lett. B760 (2016) 720](https://doi.org/10.1016/j.physletb.2016.06.013))
Systematic uncertainties

- Measurement dominated by systematic uncertainties:
 - particle composition in pPb for most bins
 - tracking efficiency and signal purity in boundary (η, p_T) bins

- Total uncertainty shown in the table:
 - down to 2.8% in $d^2\sigma/d\eta dp_T$
 - down to 4.2% in R_{pPb}

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>pPb [%] (forward)</th>
<th>pPb [%] (backward)</th>
<th>pp [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track-finding efficiency</td>
<td>1.5 – 5.0</td>
<td>1.5 – 5.0</td>
<td>1.6 – 5.3</td>
</tr>
<tr>
<td>Detector occupancy</td>
<td>0.0 – 2.8</td>
<td>0.6 – 2.9</td>
<td>0.1 – 1.6</td>
</tr>
<tr>
<td>Particle composition</td>
<td>0.4 – 4.1</td>
<td>0.4 – 4.6</td>
<td>0.3 – 2.4</td>
</tr>
<tr>
<td>Selection efficiency</td>
<td>0.7 – 2.2</td>
<td>0.7 – 3.0</td>
<td>1.0 – 1.7</td>
</tr>
<tr>
<td>Signal purity</td>
<td>0.1 – 1.8</td>
<td>0.1 – 1.17</td>
<td>0.1 – 5.8</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.3</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>0.0 – 0.6</td>
<td>0.0 – 1.0</td>
<td>0.0 – 1.1</td>
</tr>
<tr>
<td>Total (in $d^2\sigma/d\eta dp_T$)</td>
<td>3.0 – 6.7</td>
<td>3.3 – 14.5</td>
<td>2.8 – 8.7</td>
</tr>
<tr>
<td>Total (in R_{pPb})</td>
<td>4.2 – 9.2</td>
<td>4.4 – 16.9</td>
<td>–</td>
</tr>
</tbody>
</table>
Double-differential cross-sections at 5 TeV

\[\frac{d^2\sigma}{dp_Td\eta} \bigg|_{p_{\text{Pb}, pp}} = \frac{1}{\mathcal{L}} \cdot \frac{N^{ch}(\eta, p_T)}{\Delta p_T \Delta \eta} \]

- \(pp \) result compared with measurement at \(\sqrt{s} = 13 \) TeV (arXiv:2107.10090)
- cross-section at 13 TeV from 5 TeV increases a factor 1 – 3 depending on \(p_T \), consistent with expectations
Results of $R_{p\text{Pb}}$: forward region

- **Nuclear modification factor:**
 \[R_{p\text{Pb}}(\eta, p_T) = \frac{1}{A} \frac{d^2\sigma_{p\text{Pb}}(\eta, p_T)/dp_Td\eta}{d^2\sigma_{pp}(\eta, p_T)/dp_Td\eta}, \quad A = 208 \]

- **Strong suppression** at forward η, down to ~ 0.3 at low p_T and most forward rapidity

- Discrepancy at low p_T with CGC calculation

Models:
- EPPS16+DDS: I. Helenius et. al. JHEP09(2014) 138
- CGC: T. Lappi et. al. PR D88, 114020

Graph:

- **LHCb $\sqrt{s_{NN}}$=5 TeV**
- **Prompt charged particles**
- **Data**
- **EPPS16+DDS**
- **CGC**
Results of R_{pPb}: backward region

- **Nuclear modification factor:**
 \[
 R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2\sigma_{pPb}(\eta, p_T)/dp_Td\eta}{d^2\sigma_{pp}(\eta, p_T)/dp_Td\eta}, \quad A = 208
 \]

- **Enhancement** at backward for $p_T > 1.5$ GeV/c, as observed by PHENIX in Au$^+$p

- Observed a η dependence of the enhancement

- **Models:**
 - EPPS16+DDS: I. Helenius et. al.
 - does not reproduce enhancement
 - pQCD calculation with MS: Z. B. Kang et. al.
 - same calculation reproduces enhancement in Au$^+$p collisions at PHENIX

 | JHEP09(2014) 138 |
 | PL B740(2015) 23 |
 | PR C101 (2020) 034910 |

Graph:

- EPPS16+DDS
- pQCD+MS

- $-3.0 < \eta < -2.5$
- $-3.5 < \eta < -3.0$
- $-4.0 < \eta < -3.5$
- $-4.5 < \eta < -4.0$
- $-4.8 < \eta < -4.5$

Prompt charged particles in heavy-ion collisions

21/10/2021
Results of R_{pPb}: comparison with ALICE

- Continuous trend of R_{pPb} from forward to backward η rapidity, including CMS and ALICE results

Normalization uncertainties for LHCb and ALICE
Results of R_{pPb}: dependence with (x_{exp}, Q_{exp}^2)

$Q_{exp}^2 \equiv m^2 + p_T^2$ and $x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{NN}}} e^{-\eta}$

- experimental proxies for (x, Q^2)
- with η and p_T the center of each bin and $m = 256$ MeV/c2
- indirect study of the evolution of R_{pPb} with x and Q^2

- Continuous evolution of R_{pPb} with x_{exp} at different Q_{exp}^2, between forward, central and backward η

- $LHCb$, $\sqrt{s_{NN}}=5$ TeV

- Prompt charged particles

- $0.75 < Q_{exp}^2 < 0.85$ GeV2/c2
- $3 < Q_{exp}^2 < 4$ GeV2/c2
- $7 < Q_{exp}^2 < 10$ GeV2/c2
- $45 < Q_{exp}^2 < 50$ GeV2/c2

- LHCb
- ALICE, $-1.3 < \eta < 0.3$
- CMS, $-1.0 < \eta < 1.0$

- LHCb
Conclusions

- First determination of R_{pPb} for prompt charged particles in forward and backward regions at LHC
 - double-differential prompt charged particle cross-section in pp and pPb at $\sqrt{s_{NN}} = 5$ TeV
 - total uncertainty down to 4.2% in R_{pPb}
 - Study of cold nuclear matter effects over a wide range of x
 - Strong constrains to nuclear PDFs and saturation models at intermediate and very low x

- Prospects: exploit excellent (π, K, p) PID at LHCb to measure cross-sections by species in pp and pPb collisions
 - Reduction of systematic uncertainty in this measurement
 - Input to understand enhancement in backward region
Backup slides
The LHCb detector

- Forward spectrometer at LHC fully instrumented in $2 < \eta < 5$
 - Tracking system with excellent momentum resolution
 - Identification of charged hadrons (π, K, p), neutrals (γ, π^0), and leptons (μ, e)

- Resolution of B and D decay vertices from primary collision
- Highly flexible trigger, configured to measure very low p_T
- Accurate luminosity determination (uncertainty $\sim 2\%$, JINST 9 (2014) 12, P12005)
Previous results of $R_{pA,dA}$

BRAHMS R_{dAu}

PHENIX R_{pAu}

CMS, ALICE R_{pPb}

JHEP 04 (2017) 039

JHEP 1811 (2018) 013

Charged-particle spectra and nuclear modification factors

ALICE Collaboration

Parameter value description

- **R_{pA}**
 - $p+Au \rightarrow h^+ + X$, $|s_{NN}|=200$ GeV
 - 0%-100% centrality
 - $-2.2 < \eta < 1.2$ (Au-going)

Model comparisons

- EPPS16+PYTHIA
- CT10
- nCTEQ15+PYTHIA
- pQCD calculation

Statistical errors

- Shown with error bars.

Systematic errors

- Shown as boxes around data points.

Normalization uncertainties

- Consistent with data within 1 standard deviation.

Parton energy loss

- Violent collisions.

Data-driven efficiency correction procedure

- Contributed to the suppression at forward rapidity.

Data-driven efficiency correction procedure

- Contributed to the suppression at forward rapidity.

Data-driven efficiency correction procedure

- Contributed to the suppression at forward rapidity.

Data-driven efficiency correction procedure

- Contributed to the suppression at forward rapidity.