Measurement of forward Z boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

Menglin Xu
On behalf of LHCb Collaboration

Implications Workshop
21. 10. 2021
Motivation

- Precise measurements of W and Z provide an important test of the SM
- Potential to improve constraints on parton distribution functions (PDFs)
- Z boson production decaying into leptons is one of the best understood processes at LHC
- Measurements of the Z boson rapidity are particularly important for constraining u-, d-quark PDFs
Motivation

- Recently, the SeaQuest Collaboration report the results on the \bar{d}/\bar{u} PDFs
- Tensions between SeaQuest and NuSea results are seen at high x region
- As SeaQuest and Nusea are lower energy experiments, which are largely affected by nuclear effects
- The LHCb data will be the only clean data to constraint the \bar{d}/\bar{u} PDFs

Nature 590, 561 (2021)

Chin.Phys.C 45 (2021) 2, 023110
Dataset and fiducial region

- 2016-2018 Data: $5.1 \pm 0.1 \text{ fb}^{-1}$
 - $Z \rightarrow \mu^+\mu^-$ sample
 - Same-sign sample: (background study)
- Very high purity, $N_{\text{bkg}} / N_{\text{sig}} \sim 2\%$

Fiducial region

\[
\begin{array}{c|c}
\mu^\pm & \text{di-muon} \\
\hline
p_T > 20 \text{ GeV}/c & \ \\
2 < \eta < 4.5 & 60 < M_{\mu^+\mu^-} < 120 \text{ GeV}/c^2 \\
\end{array}
\]
Cross-section definition

- Cross-section measured in bin of Z, y, P_T and ϕ_η^* is given by
 \[\frac{d\sigma_{Z \rightarrow \mu^+\mu^-}}{dy}(i) = \frac{N_Z(i) \cdot f_{FSR}^Z(i)}{L \cdot \varepsilon_{REC}^Z(i) \cdot \Delta y(i)} \]

- $\phi_\eta^* = \frac{\tan((\pi - \Delta \phi^ll)/2)}{\cosh(\Delta \eta/2)}$: similar physics as the boson p_T, but could be measured with better resolution in most detectors
 - $\Delta \phi^ll$: the difference in azimuthal angle

- Total cross-section is obtained by summing the differential cross-section
In order to be directly compared with different theoretical predictions, the measured cross-section is corrected to the Born level.
QED FSR correction evaluated through ResBos.
Taking differences of FSR corrections between ResBos+Photos and Powheg+Pythia as a systematic uncertainty.
Systematic uncertainties

- Luminosity determination precision: 2.0%
 - Uncertainty is quoted separately to the other sources of systematic uncertainty
- Efficiency systematic uncertainties: 0.77%
 - From size of control channel
 - From the track modeling: dominated one

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta \sigma / \sigma$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>0.11</td>
</tr>
<tr>
<td>Background</td>
<td>0.03</td>
</tr>
<tr>
<td>Alignment & calibration</td>
<td>negligible</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.77</td>
</tr>
<tr>
<td>Closure</td>
<td>0.06</td>
</tr>
<tr>
<td>FSR</td>
<td>0.04</td>
</tr>
<tr>
<td>Total Systematic (excl. lumi.)</td>
<td>0.77</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.00</td>
</tr>
<tr>
<td>Total</td>
<td>2.15</td>
</tr>
</tbody>
</table>

LHCb preliminary
Statistical correlation matrix

- Determined using the simulation events
- Large correlations between events in low p_T^Z region, small correlations in the high p_T^Z region
- For y_Z and ϕ_{η}^*, the correlations between different bins are negligible

p_T^Z LHCb preliminary

y_Z LHCb preliminary

ϕ_{η}^* LHCb preliminary
Systematic correlation matrix

- Systematic uncertainties from background, alignment, efficiency closure test, and FSR are considered to be uncorrelated
- Luminosity uncertainties are considered to be 100% correlated

Efficiency systematic

LHCb preliminary
Single differential cross-section: y_Z

LHCb $\sqrt{s} = 13$ TeV

- $p_T(\mu) > 20$ GeV/c
- $2.0 < \eta(\mu) < 4.5$
- $60 < M(\mu^+\mu^-) < 120$ GeV/c^2

Statistical Uncertainty
Total Uncertainty

- Resbos
- Pythia, LHCb tune
- POWHEG+Pythia
- MatchBox

FEWZ+CT14
FEWZ+NNPDF3.0
FEWZ+MMHT14
FEWZ+ABM12

LHCb preliminary

2021/10/21
Reasonable agreement between data and predictions
Double differential cross-section: $y_Z - P_T$
Double differential cross-section: $y_Z - \phi_Z^*$

LHCb preliminary

2.0 < y_Z < 2.5

2.5 < y_Z < 3.0

3.0 < y_Z < 3.5

3.5 < y_Z < 4.0

4.0 < y_Z < 4.5

LHCb $\sqrt{s} = 13$ TeV
$p_T(\mu) > 20$ GeV/c
$2.0 < \eta(\mu) < 4.5$
$60 < M(\mu^+\mu^-) < 120$ GeV/c^2

Statistical Uncertainty
Total Uncertainty
ResBos

2021/10/21
Integrated cross-section

- Combined with ‘Best Linear Unbiased Estimate’ (BLUE)
 - luminosity uncertainty, systematic uncertainties from FSR, background modelling, and closure test are treated as 100% correlated.
 - Other systematic uncertainties are treated as having no correlation

\[
\begin{align*}
\text{RunII: } \sigma_{Z \rightarrow \mu^+ \mu^-} &= 195.0 \pm 0.2 \text{ (stat)} \pm 1.5 \text{ (sys)} \pm 3.9 \text{ (lumi) pb} \\
\text{2015: } \sigma_{Z \rightarrow \ell^+ \ell^-} &= 194.3 \pm 0.9 \text{ (stat)} \pm 3.3 \text{ (sys)} \pm 7.6 \text{ (lumi) pb}
\end{align*}
\]
The most precise measurement of the Z boson production cross-section in the forward region, using the $\sqrt{s} = 13$ TeV pp collision data in muon channel

The integrated cross-section is measured to be

$$\sigma_{Z \rightarrow \mu^+ \mu^-} = 195.0 \pm 0.2 \text{ (stat)} \pm 1.5 \text{ (sys)} \pm 3.9 \text{ (lumi)} \text{ pb (LHCb preliminary)}$$

Reasonable agreement between the data and the theoretical predictions is seen

Provide important and unique information to the PDFs global fitting, especially in the large and small x region
Back up
High purity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>data-driven</td>
<td>2469</td>
<td>2298</td>
<td>3352</td>
</tr>
<tr>
<td>Mis-ID</td>
<td>data-driven</td>
<td>1626</td>
<td>1442</td>
<td>2130</td>
</tr>
<tr>
<td>$Z \rightarrow \tau^+\tau^-$</td>
<td>PYTHIA8</td>
<td>259</td>
<td>235</td>
<td>324</td>
</tr>
<tr>
<td>$gg \rightarrow t\bar{t}$</td>
<td>PYTHIA8</td>
<td>143</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td>$qq \rightarrow t\bar{t}$</td>
<td>PYTHIA8</td>
<td>385</td>
<td>349</td>
<td>482</td>
</tr>
<tr>
<td>W^+W^-</td>
<td>PYTHIA8</td>
<td>46</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4929</td>
<td>4496</td>
<td>6528</td>
</tr>
<tr>
<td>Bkg/Signal</td>
<td></td>
<td>2.01%</td>
<td>1.97%</td>
<td>2.09%</td>
</tr>
</tbody>
</table>
Statistical correlation matrix – two dimensional

\[\gamma_Z - p_T^Z \]

LHCb preliminary

\[\gamma_Z - \phi_{\eta}^* \]

LHCb preliminary
Efficiency uncertainties correlation matrix – 2D

\[y_Z - p_T^Z \]

LHCb preliminary

\[y_Z - \phi_{\eta}^* \]

LHCb preliminary
FSR correction

LHCb preliminary

LHCb preliminary
Tracking efficiencies – uncertainty summary

- Total systematic uncertainty from the tracking: 0.47% for each track
 - Matching correction: 0.28%
 - Data and MC matching efficiency differences: 0.33%
 - Data and MC MuonTT finding efficiency differences: 0.1%
 - Differences between the MC-truth eff and the corrected MC tag-and-probe eff
- In previous study, this uncertainty is assigned as 1% for each track

![Graphs showing tracking efficiencies](image-url)