Double Parton Scattering with Herwig++

Miroslav Myška

8th MCnet meeting, 24 September 2010

Multiple Parton Scattering

Double (multiple) parton scattering (DPS / MPS)

= process, where two (more) parton-parton interactions occur in one hadron-hadron interaction

Disconnected scattering vs. Rescattering

DPS cross section:

$$\sigma_D = \frac{m}{2} \int_{p_T^c} \Gamma_A(x_1, x_2; b) \hat{\sigma}(x_1, x_1') \hat{\sigma}(x_2, x_2') \Gamma_B(x_1', x_2'; b) dx_1 dx_1' dx_2 dx_2'$$

Multiple Parton Scattering

Poissonian model:

$$\sigma_N = \int \frac{1}{N!} \left(\sigma_S F(b) \right)^N d^2 b$$

- assumes no correlations for partons inside the hadron
- allows the simple factorization of complex distribution function:

$$\Gamma(x_1, x_2; b) = f(x_1)f(x_2)F(b)$$

- limited for low x region (mostly true)
- all the information about spatial distribution in transverse space is integrated into Effective cross section:

DPS cross section is then simple:
$$\sigma_D = \frac{1}{2} \frac{\sigma_S^2}{\sigma_{eff}}$$
 Effective cross section $\sigma_{eff}^{-1} = \int \left[F(b) \right]^2 d^2b$

$$\sigma_{eff}^{-1} = \int \left[F(b) \right]^2 d^2b$$

- (e.g. GS08) dPDF's:
 - considering long. mom. correlations and conservation
 - obeying double DGLAP equation
 - the dPDFs and sPDFS are related by sum rules, e.g.

$$\sum_{a} \int_{0}^{1-x_{2}} dx_{1}x_{1}f_{ab}(x_{1}, x_{2}; Q^{2}) = (1-x_{2})f_{b}(x_{2}, Q^{2})^{-1}$$

Herwig++: Eikonal Model

- At fixed impact parameter **b** partons interact independently
 - Poissonian distribution
- Mean number of scatters is (for general sub-processes):

$$\langle n(b = |\mathbf{b}|, s) \rangle = \int d^2 \mathbf{b}' \int_{p_T^{\min^2}} dp_T^2 \sum_{ij} \frac{1}{1 + \delta_{ij}} \frac{d\hat{\sigma}_{ij}(x_1 \sqrt{s}, x_2 \sqrt{s}, p_T^2)}{dp_T^2}$$
$$\otimes G_{i/h_1}(x_1, \mathbf{b} - \mathbf{b}', \mu^2) \otimes G_{j/h_2}(x_2, \mathbf{b}', \mu^2) = A(b) \cdot \sigma^{\text{inc}}(s; p_T^{\min})$$

- p_T^{min} and μ^2 are important steering parameters for UE tune
 - There is a strong and constant correlation between p_T^{min} and μ^2 : the smaller hadron radius always balance against a larger p_T cutoff (for UE activity)
 - Old tune (H++ 2.3.0): $p_T^{min} = 3.4 \text{ GeV}, \, \mu^2 = 1.5 \text{ GeV}^2$
 - □ New tune (H++ 2.4.2): $p_T^{min} = 4.1 \text{ GeV}$, $\mu^2 = 1.33 \text{ GeV}^2$
- Inclusive cross section (k int. of type 1, m int. of type 2):

$$\sigma_{k,m}(\sigma_a,\sigma_b) = \int d^2b \ \mathcal{P}_k(A(b)\sigma_a) \ \mathcal{P}_m(A(b)\sigma_b) \ = \int d^2b \ \frac{(A(b)\sigma_a)^k}{k!} \ e^{-A(b)\sigma_a} \ \frac{(A(b)\sigma_b)^m}{m!} \ e^{-A(b)\sigma_b}$$

Herwig++: Eikonal Model

- Generation algorithm:
 - factorization:

$$G(x, \mathbf{b}, \mu^2) = f(x, \mu^2) \cdot S(\mathbf{b})$$

elmag. form factor-like form:

$$S_{\bar{p}}(\mathbf{b}) = S_p(\mathbf{b}) = \int \frac{\mathrm{d}^2 \mathbf{k}}{2\pi} \frac{e^{i\mathbf{k}\cdot\mathbf{b}}}{(1+\mathbf{k}^2/\mu^2)^2}$$

Overlap function evaluation:

$$A(b) = \frac{\mu^2}{96\pi} (\mu b)^3 K_3(\mu b)$$

- 1st Secondary Sub-Process forced to be same ME
- Other Sub-Processes (till $\langle n \rangle$) QCD $2 \rightarrow 2$
- Event veto for momentum conservation violation
- no p_T ordering (unlike e.g. Pythia)

Process: $p+p \rightarrow W^++W^++X$

- Signal process: (DPS): 2 (hard) independent $qq \rightarrow W^+ \rightarrow e^+ v_e$ sub-processes
- Background:
 - \Box (SPS) SM $e^+e^+ + jj$ production:

- SM W⁺Z and ZZ production
 - while electron is outside the detector acceptance $|\eta|$ < 2.5 (Atlas ID)
 - no detector effects are considered (for now)
- heavy flavor quark production
- DPS and pile-up effects are assumed to be negligible

Process: Generation

- DPS: Herwig++ 2.4.2
- SPS: Madgraph v.4 + Herwig++
- $\sqrt{s} = 7 \& 14 \text{ TeV}$; PDF: cteq6l1, mrst2007lomod.lhgrid
- set MPIHandler:softInt Yes
- set MPIHandler:twoComp Yes

```
(soft inv. radius squared: 7TeV(cteq): 0.51 GeV<sup>2</sup>, (mrst): 0.49 GeV<sup>2</sup>, 14TeV(cteq): 0.47 GeV<sup>2</sup>, (mrst): 0.43 GeV<sup>2</sup>)
```

- Herwig++ (DPS generation):
 - insert SimpleQCD:MatrixElements[0] MEqq2W2ff
 - □ set MEqq2W2ff:Wcharge 1 #only W+
 - □ set MEqq2W2ff:Process 3 #only positrons
 - set LeptonKtCut:MinKT 0.001*GeV
 - set LeptonKtCut:MaxEta 5
 - set LeptonKtCut:MinEta -5
 - □ set MassCut:MinM 0.002*GeV

Tight vs. loose generation cuts

- cross section depends significantly on the cuts used for direct event filtering during the generation
- tight cuts: $p_T(e^+) > 5 \text{GeV}$, $|\eta| < 2.5$
- loose cuts: $p_T(e^+)>1MeV$, $|\eta|<5$

- \mathbf{x} frac. of long. momentum dependence on cuts
- no strong dependence on PDF's used

Tight vs. loose generation cuts

- plots for $\sqrt{s} = 14$ TeV, PDF: cteq6l1
- filtering affects distribution of number of parton sub-processes as well as other kin. variables (e.g. pseudorapidity of hardest positron)

Data Analysis

- final state requirements:
 - \Box always at least two positrons with $p_T > 5$ GeV, $|\eta| < 2.5$
 - 2 analyzed objects: e⁺_{max}, e⁺_{min}
 - \Box if jet: then $p_T > 5$ GeV, $|\eta| < 2.5$
 - anti- k_T algorithm, R = 0.4
 - analysed object: jet_{max}
 - isolation requirements: $\Delta R(e^+e^+) > 0.2$, $\Delta R(e^+j) > 0.2$ (57% survive isolation cuts)

ho veto on hard electrons $p_T > 5 \text{ GeV}$

Transverse Momentum Distribution

Left: the hardest positron

Right: the 2nd hardest positron

Positron-Positron Pair Characteristics

Left: transverse momentum

Right: invariant mass

Background Characteristics

Left: missing transverse momentum

Right: transverse energy of the hardest jet

2D histograms: demonstration of complementarity of selective vetoes

Left: transverse momentum: positron pair vs. missing part

Right: transverse momentum: hardest positron vs. hardest jet

Results: Cross sections; $\sigma_{\text{eff}} = 11.5 \text{ mb}$

σ [fb]	DPS				SPS: SM e ⁺ e ⁺ jj			SPS: W ⁺ Z
	14 TeV		7 TeV		14 TeV	7 TeV		14 TeV
	cteq	mrst	cteq	mrst	cteq	cteq	mrst	cteq
total	0.75	1.03	0.28	0.37	2.69	1.20	1.17	6.45
jet veto	0.54	0.74	0.22	0.29	0.16	0.08	0.09	4.45
20 GeV	72%	72%	79%	78%	6%	7%	8%	69%
jet veto 30 GeV	0.63	0.85	0.25 89%	0.33	0.32	0.17 14%	0.19	5.16 80%

Results: Comparison of PDF's -uncertainty in the cross section

Left: transverse momentum of the hardest jet

Right: transverse momentum of the hardest positron

Another handlers to separate signal different from p_T/E_T distributions

distributions of Φ and η,
their difference and other
functions could provide
another helpful tool

• e.g. Pseudorapidity asymmetry.

$$a_{\eta_l} = \frac{\sigma(\eta_{l_1} \times \eta_{l_2} < 0) - \sigma(\eta_{l_1} \times \eta_{l_2} > 0)}{\sigma(\eta_{l_1} \times \eta_{l_2} < 0) + \sigma(\eta_{l_1} \times \eta_{l_2} > 0)}$$

Summary and next steps

- Double parton production of same-sign W pair was performed for e⁺v_e decay channel
- SM background process $pp \rightarrow e^+e^+ jj$ was prepared and found to be strongly reduced by p_T vetoes
- SM background process pp \rightarrow W⁺Z under construction preliminary results show it's dominance
- To do:
 - other sources of background need to be investigated as well as other final states (muon or multi-jets)
 - invisible component does not allow for usage of pair-to-pair variables characteristic for DPS events