The Muon Collider

Daniel Schulte
Introduction

Muon collider had been studied mainly in the US (MAP), effort reduced after P5. Other activities mainly in UK (demonstration of ionisation cooling) and at INFN (alternative muon production scheme).

The Laboratory Directors Group (LDG) appointed a working group (chair N. Pastrone) to review the muon collider for the European Strategy Update:

- The report was favorable

The updated strategy recommends R&D on muon beams

The LDG initiated an international muon collider collaboration:

- kick-off meeting July 3rd, 272 participants

CERN will host the study, we are finalising a Memorandum of Cooperation.
High-energy Frontier Proposals

European Strategy Process just finished

Four main high-energy facilities proposed
- two at CERN
- two in Asia

FCC (Future Circular Collider):
- FCC-hh
 - pp collider with 100 TeV cms
 - ion option
- FCC-ee
 - Potential e^+e^- first stage
- FCC-eh
 - additional option

ILC
- 250 GeV electron-positron linear collider
- Japan might host
- limited in energy reach

CEPC / SppC
- e^+e^- collider 90-240 GeV
- SppC
- 75-150 TeV hadron collider later in the same tunnel

CLIC
- 380 GeV, 1.5 TeV and 3 TeV electron positron collider

D. Schulte
Muon COller, KEK-PH lectures and workshops, June 2021
Proposed Projects (ESU)

<table>
<thead>
<tr>
<th>Project</th>
<th>Type</th>
<th>Energy [TeV]</th>
<th>Int. Lumi. [a^{-1}]</th>
<th>Oper. Time [y]</th>
<th>Power [MW]</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILC</td>
<td>ee</td>
<td>0.25</td>
<td>2</td>
<td>11</td>
<td>129 (upgr. 150-200)</td>
<td>4.8-5.3 GILCU + upgrade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8-5.3</td>
<td></td>
</tr>
<tr>
<td>CLIC</td>
<td>ee</td>
<td>0.38</td>
<td>1</td>
<td>8</td>
<td>168</td>
<td>5.9 GCHF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(370)</td>
<td>+5.1 GCHF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>2.5</td>
<td>7</td>
<td>(590)</td>
<td>+7.3 GCHF</td>
</tr>
<tr>
<td>CEPC</td>
<td>ee</td>
<td>0.091+0.16</td>
<td>16+2.6</td>
<td></td>
<td>149</td>
<td>5 G$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.24</td>
<td>5.6</td>
<td>7</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>FCC-ee</td>
<td>ee</td>
<td>0.091+0.16</td>
<td>150+10</td>
<td>4+1</td>
<td>259</td>
<td>10.5 GCHF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.24</td>
<td>5</td>
<td>3</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.365 (+0.35)</td>
<td>1.5 (+0.2)</td>
<td>4 (+1)</td>
<td>340</td>
<td>+1.1 GCHF</td>
</tr>
<tr>
<td>LHeC</td>
<td>ep</td>
<td>60 / 7000</td>
<td>1</td>
<td>12</td>
<td>(+100)</td>
<td>1.75 GCHF</td>
</tr>
<tr>
<td>FCC-hh</td>
<td>pp</td>
<td>100</td>
<td>30</td>
<td>25</td>
<td>580 (550)</td>
<td>17 GCHF (+7 GCHF)</td>
</tr>
<tr>
<td>HE-LHC</td>
<td>pp</td>
<td>27</td>
<td>20</td>
<td>20</td>
<td>7.2 GCHF</td>
<td></td>
</tr>
</tbody>
</table>

D. Schulte
Muon C Collider, KEK-PH lectures and workshops, June 2021
Proton-driven Muon Collider Concept

Short, intense proton bunches to produce hadronic showers

Muons are captured, bunched and then cooled by ionisation cooling in matter

No CDR exists, no coherent baseline of machine
No cost estimate
Need to extend to higher energies (10+ TeV)
But did not find something that does not work
Lepton Physics at High Energy

High energy lepton colliders are precision and discovery machines

\[V = \frac{1}{2} m_h^2 h^2 + (1 + k_3) \lambda_{hhh}^{SM} h v h^3 + (1 + k_4) \lambda_{hhhh}^{SM} h^4 \]

Precision potential

Measure \(k_4 \) to some 10%
With 14 TeV, 20 ab\(^{-1}\)

Discovery reach

14 TeV lepton collisions are comparable to 100 TeV proton collisions for production of heavy particle pairs

Luminosity goal

(Factor \(O(3) \) less than CLIC at 3 TeV)
4x10\(^{35}\) cm\(^{-2}\)s\(^{-1}\) at 14 TeV

Chiesa, Maltoni, Mantani, Mele, Piccinini, Zhao
Muon Collider - Preparatory Meeting
Proposed Lepton Colliders (ESU)

Luminosity per facility

Maximum proposed energy CLIC 3 TeV

- Cost estimate total of 18 GCHF
 - In three stages
 - Largely main linac, i.e. energy

- Power 590 MW
 - Part in luminosity, a part in energy

- Similar to FCC-hh (24 GCHF, 580 MW)

Technically possible to go higher in energy

But is it affordable?

Cost roughly is linear with energy

Power consumption roughly goes with the square of energy

\[
L \propto P_{\text{synrad}} E_{cm}^{-3.5} \\
L \propto P_{RF}
\]

\[
L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s}_\mu}{10 \text{ TeV}} \right)^2 \times 2 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1}
\]
Electron-positron rings are multi-pass colliders limited by synchrotron radiation.

Strong dependence on particle mass.

Hence proton rings are energy frontier.

Electron-positron linear colliders avoid synchrotron radiation, but single pass.

Energy challenge
Need full voltage in main linac which is costly.

Luminosity challenge
Need very small beam size at collision is required, leads to strong beam-beam effects, requires extremely tight tolerances.

\[\Delta E \propto \left(\frac{E}{m} \right)^4 \frac{1}{R} \]
Comparing Luminosity in MAP vs. CLIC

In linear colliders luminosity per beam power is independent of collision energy for same technology

CLIC is at the limit of what one can do (decades of R&D)

No obvious way to improve

$$\mathcal{L} \propto \frac{N}{\sqrt{\beta_x \epsilon_x} \sqrt{\beta_y \epsilon_y}} P_{\text{beam}}$$

Luminosity per beam power increases with energy in muon collider

Muon colliders have the potential for high energies

$$\mathcal{L} \propto \gamma \langle B \rangle \sigma_{\delta} \frac{N_0}{\epsilon \epsilon_L} f_T N_0 \gamma$$
Luminosity Goals

Target integrated luminosities

<table>
<thead>
<tr>
<th>\sqrt{s}</th>
<th>$\int L dt$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 TeV</td>
<td>1 ab^{-1}</td>
</tr>
<tr>
<td>10 TeV</td>
<td>10 ab^{-1}</td>
</tr>
<tr>
<td>14 TeV</td>
<td>20 ab^{-1}</td>
</tr>
</tbody>
</table>

Note: currently no staging
Would only do 10 or 14 TeV

- Tentative parameters achieve goal in 5 years
- FCC-hh to operate for 25 years
- Might integrate some margins
- Aim to have two detectors

Tentative target parameters

Scaled from MAP parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>3 TeV</th>
<th>10 TeV</th>
<th>14 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>$10^{34} \text{ cm}^{-2} \text{s}^{-1}$</td>
<td>1.8</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>N</td>
<td>10^{12}</td>
<td>2.2</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>f_r</td>
<td>Hz</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>P_{beam}</td>
<td>MW</td>
<td>5.3</td>
<td>14.4</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>km</td>
<td>4.5</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>$$</td>
<td>T</td>
<td>7</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>ε_L</td>
<td>MeV m</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>σ_E/E</td>
<td>%</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>σ_z</td>
<td>mm</td>
<td>5</td>
<td>1.5</td>
<td>1.07</td>
</tr>
<tr>
<td>β</td>
<td>mm</td>
<td>5</td>
<td>1.5</td>
<td>1.07</td>
</tr>
<tr>
<td>ε</td>
<td>μm</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>$\sigma_{x,y}$</td>
<td>μm</td>
<td>3.0</td>
<td>0.9</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Comparison:

CLIC at 3 TeV: 28 MW

Now study if these parameters lead to realistic design with acceptable cost and power
Target Parameter Scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>3 TeV</th>
<th>10 TeV</th>
<th>14 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>10^{34} cm$^{-2}$s$^{-1}$</td>
<td>1.8</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>N</td>
<td>10^{12}</td>
<td>2.2</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>f_r</td>
<td>Hz</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>P_{beam}</td>
<td>MW</td>
<td>5.3</td>
<td>14.4</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>km</td>
<td>4.5</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>$$</td>
<td>T</td>
<td>7</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>ε_L</td>
<td>MeV m</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>σ_E / E</td>
<td>%</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>σ_z</td>
<td>mm</td>
<td>5</td>
<td>1.5</td>
<td>1.07</td>
</tr>
<tr>
<td>β</td>
<td>mm</td>
<td>5</td>
<td>1.5</td>
<td>1.07</td>
</tr>
<tr>
<td>ε</td>
<td>μm</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>$\sigma_{x,y}$</td>
<td>μm</td>
<td>3.0</td>
<td>0.9</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Scaled from MAP parameters

- Emittance is constant: $\sigma_E \sigma_z = \text{const}$
- Collider ring acceptance is constant: $\sigma_E/E = \text{const}$
- Bunch length decreases: $\sigma_z \propto \frac{1}{\gamma}$
- Betafunction decreases

$$\mathcal{L} \propto \gamma \langle B \rangle \sigma_\delta \frac{N_0}{\varepsilon \varepsilon_L} f_r N_0 \gamma$$
International Muon Collider Collaboration

Objective:
In time for the next European Strategy for Particle Physics Update, the study aims to **establish whether the investment into a full CDR and a demonstrator is scientifically justified.**

It will provide a baseline concept, well-supported performance expectations and assess the associated key risks as well as cost and power consumption drivers. It will also identify an R&D path to demonstrate the feasibility of the collider.

Scope:
- Focus on two energy ranges:
 - **3 TeV**, if possible with technology ready for construction in 15-20 years
 - **10+ TeV**, with more advanced technology, the reason to do muon colliders
- Explore synergy with other options (neutrino/higgs factory)
- Define R&D path

Deliverable:
- Report supporting that the muon collider is a realistic option, including description of required R&D programme to arrive at CDR
- Conceptual design report for test facility
Technically Limited Long-Term Timeline

- **Exploratory phase**
 - 2021
 - 2022
 - 2023
 - 2024
 - 2025

- **Definition phase**
 - 2026
 - 2027
 - 2028
 - 2029
 - 2030

- **ESPPU Phase**
 - Test facility TDR
 - 2031
 - 2032
 - 2033

- **CDR phase**
 - Test facility implementation
 - 2034
 - 2035
 - 2036

- **TDR phase**
 - 2037
 - 2038
 - 2039
 - 2040

Collider Design
- Baseline design
- Design optimisation
- Project preparation
- Approve

Test Facility
- Design
- TDR
- Construct
- Exploit

Technologies
- Design / models
- Prototypes / t. f. comp.
- Prototypes / pre-series

Collider baseline and test facility CDR ready for review
- Cost scale known

Test facility TDR ESPP decision
- Selected TF host
- Ready to commit
- Cost known

Ready to construct

D. Schulte
Muon COLLider, KEK-PH lectures and workshops, June 2021
Muon Collider Luminosity Drivers

Fundamental limitation
Requires emittance preservation and advanced lattice design

\[\mathcal{L} \propto \gamma \langle B \rangle \sigma_\delta \frac{N_0}{\epsilon \epsilon_L} f_r N_0 \gamma \]

High energy
Large energy acceptance
Dense beam
High beam power

Luminosity per power increases with energy
Provided all technical limits can be solved

\[L \gtrsim \frac{5 \text{years}}{\text{time}} \left(\frac{\sqrt{s}_\mu}{10 \text{ TeV}} \right)^2 2 \cdot 10^{35} \text{cm}^{-2} \text{s}^{-1} \]

Constant current for required luminosity
Better scaling than linear colliders
Key Challenge Areas

10+ TeV is uncharted territory

- **Physics potential** evaluation
- Impact on the environment
 - The *neutrino flux mitigation* and its impact on the site
- The impact of *machine induced background* on the detector, as it might limit the physics reach.
- **High-energy systems** after the cooling (acceleration, collision, ...)
 - This can limit the energy reach via cost, power and beam quality
- **High-quality beam production** of cooled muon beam
 - MAP did study this in detail
 - First experimental verification in MICE
 - Need to optimise and prepare test facility
- **Integrated Collider Design** with choices, parameters, trade-offs
 - need to cover all accelerator areas

D. Schulte
Muon COllider, KEK-PH lectures and workshops, June 2021
Overall Considerations

Drives the beam quality similar to MAP design still challenging design with challenging components

Cost and power consumption drivers, limit energy reach e.g. 30 km accelerator for 10/14 TeV, 10/14 km collider ring Also impacts beam quality Drives neutrino radiation and beam induced background
Proton Complex and Target Area

Proton beam power is no issue, some look required at H-source and accumulator complex

2 MW proton beam requires radiation protection

Large aperture $O(1m)$ to allow shielding

High field to efficiently collect pions/muons:
20 T then tapering
Cooling Concept

Limit muon decay, cavities with high gradient in a magnetic field tests much better than design values but need to develop

Compact integration to minimise muon loss

Minimise betafunction with strongest solenoids (40+ T)
32 T achieved, 40+ T planned

\[\frac{d\epsilon_{\perp}}{ds} = -\frac{1}{(\nu/c)^2} \frac{dE}{ds} \frac{\epsilon_{\perp}}{E} + \frac{1}{2} \frac{1}{(\nu/c)^3} \left(\frac{14 \text{ MeV}}{E} \right)^2 \frac{\beta\gamma}{L_R} \]
Cooling: The Emittance Path

For acceleration to multi-TeV collider

Final Cooling

For acceleration to Higgs Factory

Initial 6D Cooling

Charge Separator

6D Cooling

Bunch Merge

post-merge 6D Cooling

Exit Front End (15mm,45mm)

pre-merge 6D Cooling (original design)

MAP collaboration

D. Schulte

Muon COLliding, KEK-PH lectures and workshops, June 2021
Cooling: The Emittance Path

- Specification
 - For acceleration to multi-TeV collider
 - Final Cooling
 - For acceleration to Higgs Factory

- Achieved (simulations)
 - Initial (X)
 - Initial (Y)
 - VCC & Hybrid
 - HCC
 - post-merge 6D Cooling
 - pre-merge 6D Cooling (original design)
 - Bunch Merge

- Target
 - Phase Rotator
 - Front End
 - Exit Front End (15mm, 45mm)

- Front End

- MAP collaboration

- D. Schulte

Muon COLLider, KEK-PH lectures and workshops, June 2023
Cooling: The Emittance Path

- **Specification**
 - For acceleration to multi-TeV collider

- **Achieved (simulations)**
 - Several ideas to improve final cooling
 - Need to work out the solution
 - **Highest field HTS** helps
 - **Phase space** manipulations of beam

- **Initial**
 - Initial (X)
 - Initial (Y)

- **Final**
 - Final Cooling

- **Bunch Merge**
 - Post-merge 6D Cooling

- **Target**
 - Phase Rotator

- **Exit Front End**
 - (15mm, 45mm)

- **MAP collaboration**

D. Schulte

Muon Collider, KEK-PH lectures and workshops: June 2023
Cooling Challenges and Status

Cavities with very high accelerating gradient in strong magnetic field

Very strong solenoids (> 30 T) for the final cooling
 • simplified: Luminosity is proportional to the field

Integrated system test

MuCool: >50 MV/m in 5 T field

Two solutions
 • Copper cavities filled with hydrogen
 • Be end caps

NHFML
32 T solenoid with low-temperature HTS

We would like to push even further

Plans for 40+ T exist

MICE (UK)

D. Schulte

Muon Collider, KEK-PH lectures and workshops, June 2021
MICE (in the UK)

Principle of ionisation cooling has been demonstrated

More particles at smaller amplitude after absorber is put in place

Nature volume 578, pages 53-59 (2020)

More complete experiment with higher statistics, more than one stage required

Integration of magnets, RF, absorbers, vacuum is engineering challenge
Main 6D-cooling has many magnets and needs **tight integration** with RF and absorbers.

Are already aware of slightly violated space constraints
- maybe cool copper can help both gradient, space and peak power

Alignment has to be integrated (e.g. additional bellows)

Beam operation is important, e.g. beam position on absorber wedge, diagnostics integration, ...
High-energy Complex

Proton Driver
- SC Linac
- Accumulator
- Buncher
- Combiner

Front End
- MW-Class Target Capture Channel
- Decay Channel
- Buncher
- Phase Rotator

Cooling
- Initial 6D Cooling
- Charge Separator
- Buncher
- Merge
- 6D Cooling
- Final Cooling

Acceleration
- FFAG (static superconducting magnets)
 - or RCS (rapid cycling synchrotron)

Collider Ring
- E_{CM}: Higgs Factory to ~10 TeV

Initial acceleration
- Linacs/recirculating linacs
- Detailed designs from MAP
 - Alex Bogacz

Final acceleration
- FFAG (static superconducting magnets)
- or RCS (rapid cycling synchrotron)

High-energy designs required

Start-to-end simulations
- To be started

Collider ring
- High-energy designs required
High-energy Acceleration

Rapid cycling synchrotron (RCS)
- Ramp magnets to follow beam energy
- Combine static and ramping magnets
- Possible circumference
 - 14-26.7 km at 3 TeV
 - $O(30 \text{ km})$ for 10 and 14 TeV
- Power consumption of fast-ramping systems is important

FFAG
- Fixed (high-field) magnets but large energy acceptance
- Challenging lattice design for large bandwidth and limited cost
- Complex high-field magnets
- Challenging beam dynamics

EMMA proof of FFA principle
Key RCS Components

Fast-ramping, normal-conducting magnets
(5 km of 2 T of per TeV beam energy in hybrid design)
Design optimisation needed

Fast, high-field HTS ramping magnets could benefit 10+
TeV design
Need $O(100)$ improvement in speed and $O(\text{few})$ in amplitude

<table>
<thead>
<tr>
<th>Acceleration 0.3 to 1.5 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
</tr>
<tr>
<td>8 T dipole</td>
</tr>
<tr>
<td>L_{ramp}</td>
</tr>
<tr>
<td>B_{ramp}</td>
</tr>
</tbody>
</table>

Test of **fast-ramping normal-conducting magnet** design

- **FNAL**
 12 T/s HTS
 0.6 T max
 Need to push in field and speed

Power converters (recovery of energy in ramping magnets, $O(200 \text{ MJ})$ at 14 TeV) *Design started*

RF (also for FFA):
Single-bunch beam, high charge ($10 \times \text{HL-LHC}$), maintain small longitudinal emittance, high efficiency
Design started
Final Focus

Pushing beta-functions down at higher energy is key to luminosity

\[\beta^* \propto \frac{1}{E} \]

Focusing of higher energy beam is more difficult

Want to keep triplet short
- rule of thumb: shorter triplet is better for the beam

First considerations on 14 TeV Design (R: Tomas)

- \(\beta^*_{x,y} = 1 \text{ mm} \)
- \(B_{\text{peak}} = 18 \text{ T} \)
- \(N_\sigma = 6 \sigma \)
- \(E = 7 \text{ TeV} \)
- \(\text{Aper.} = 0.3 \text{ m} \)

Sensor positions are located such that the first is close to the quadrupole and the second is on the IP with non-zero momentum deviation.

High gradient important at high energy
- HL-LHC level at 3 TeV
- HTS at 14 TeV

What can we hope for from Nb\(_3\)Sn and HTS in 30 years?
Collider Ring Arcs

MAP 3 TeV example:

- **10.4 T** 6 m-long dipoles, 150 mm aperture
- 5 m-long combined function magnets with **8 T** and **85 T/m** and **9 T** and **-35 T/m**
- **50/30 mm shielding**
- 500 W/m losses
- In cold mass 1.5 mW/g but 10 W/m

- Expect shielding/aperture not to increase dramatically with beam energy
- Currently no 10 TeV design
- One US 6 TeV design requires 20 T dipoles, but seems very high
- Open midplane seems difficult

At 3 TeV: Is NbTi worth considering for cost effectiveness?

What can we expect for each technology?

(V.V. Kashikhin et al.)

(N. Mokhov et al.)
Technology Progress

Important progress on high-field magnets for many projects, HL-LHC, FCC, ...

General development of magnets (Nb$_3$Sn and HTS) in all regions

Consider more conventional for first stage, more advanced technology for second stage

Development of conductors (FCC)

15 T dipole demonstrator, 60-mm aperture, 4-layer graded coil

Magnet progress is important
Need to share magnet work for muon collider

7 companies, two universities and two national research institutes
Neutrino Radiation

Important luminosity limitation
Particularly high in direction of the straights
⇒ buy land in direction of straights

Have to still cover arcs

Typical legal limit 1 mSv/year

MAP goal < 0.1 mSv/year

No legal procedure < 10 μSv/year

LHC achieved < 5 μSv/year

No mitigation, 500 m deep tunnel:

3 TeV: close to LHC

14 TeV: around legal limit

Needed to find a solution

Work with **Radiation Protection, Civil Engineering, Geometers** and **Lattice Design** started to find solutions

Mitigate radiation to a level as low as reasonably achievable

Similar to LHC
Mokhov, Ginneken: move beam in collider aperture
Investigating: move collider ring components, e.g. vertical bending with 1% of main field

Opening angle ± 1 mrad
Even at 14 TeV
200 m deep tunnel would be comparable to LHC case

Need to study impact on beam operation, e.g. dispersion control, and components
Selected Recent Progress

Ramping **magnet challenge**
At 14 TeV, energy in field is $O(200 \text{ MJ})$
Need to recover it pulse to pulse
Started to develop **powering scheme** with energy recovery

RF challenge (also for FFA):
High efficiency for power consumption
High-charge (10 x HL-LHC), short, single-bunch beam
Maintain small longitudinal emittance
Studies on cavity wakefields and longitudinal dynamics started

Collective effects might be a bottleneck
Revisiting for higher energies
Need to develop tools for collective effects in matter
Collider Ring Lattice Design:
Based on MAP design, lattice design for high energy is starting
Started production of radiation maps and identified hot spots around IP and in arcs
Need to include radiation considerations in lattice design

Loss challenge in collider ring:
Loss per unit length is constant fewer, but higher energy particles
Simulations of shielding started

A. Lechner
D. Calzolari
Tentative Detector Performance Specification

10+ TeV collider enters uncharted territory
Need to establish physics case and detector feasibility

Established tentative detector performance specifications in form of DELPHES card (thanks to M. Selvaggi, Werner Riegler, Ulrike Schnoor, A. Sailer, D. Lucchesi, N. Pastrone M. Pierini, F. Maltoni, A. Wulzer et al.), based on FCC-hh and CLIC performances, including masks against beam induced background (BIB)

• For use by physics potential studies
 – Are the performances sufficient or too good?
• For detector studies to work towards
 – make sure technologies are reasonable
 – ensure background is OK
• Please find the card here: https://muoncollider.web.cern.ch/node/14

Detector simulation studies/design will now have to verify/ensure that this is realistic considering background and technologies
Detector

Detector is based on CLIC detector

Nozzles added to protect from beam-induced background (BIB)

Each beam contains one bunch crossing every 15 µs (3 TeV) or 47 µs (14 TeV)

Muon decay rate at 3 TeV: 200,000 bx$^{-1}$ m$^{-1}$

Rate decreases with energy but energy in each decays increases

Simulations for 1.5 TeV with LineBuilder and FLUKA comparing to previous MAP results (MARS)

Will study higher energies as machine designs become available
Beam induced background studies on detector at $\sqrt{s} = 1.5$ TeV

MARS15 simulation in a range of ±100 m around the interaction point

750 GeV beam

Particle composition of the beam-induced background as a function of the muon decay distance from the interaction point

Simulated time of arrival (TOF) of the beam background particles to the tracker modules with respect to the expected time (T0) of a photon emitted from IP

D. Schulte
Muon COllider, KEK-PH lectures and workshops, June 2021
Alternative: The LEMMA Scheme

45 GeV positrons to produce muon pairs
Accumulate muons from several passages
Low-emittance muon beam can reduce radiation

Less mature than proton-driven scheme
Large positron current required
Target is challenging
Large positron production rate \([O(10^{17}/s)]\)
Currently do not reach luminosity goal

D. Schulte
Muon Collider, KEK-PH lectures and workshops, June 2021
Technically Limited Long-Term Timeline

- **Exploratory phase**
- **Definition phase**
- **ESPPU Phase**
- **Test facility TDR**
- **CDR phase**
- **Test facility implementation**
- **TDR phase**

Collider Design
- Baseline design
- Design optimisation
- Project preparation
- Approve

Test Facility
- Design
- TDR
- Construct
- Exploit

Technologies
- Design / models
- Prototypes / t. f. comp.
- Prototypes / pre-series

- Collider baseline and test facility CDR ready for review
- Cost scale known
- Test facility TDR
- ESPP decision
- Selected TF host
- Ready to commit
- Cost known
- Ready to construct

D. Schulte
Muon COllider, KEK-PH lectures and workshops, June 2021
Test Programme

High-energy complex mostly consists of known components with pushed performances
- Can be tested as individual prototypes
- Synergies with other developments exist
- Some beam experiments might be useful but could be considered at other accelerators, e.g. control of longitudinal phase space

Production and cooling complex is novel and unique to the muon collider
- Many components are unconventional
 - e.g. high-gradient cavities in magnetic field with Be windows or filled with gas
 - massive use of absorbers in the beam path
- Novel technologies beyond MAP design can be considered
 - e.g. very short RF pulse to reduce breakdown probability
 - e.g. use of cooled copper
- Also compact integration is required to maximise muon survival
 - strong superconducting solenoids next to RF at room temperature
 - complex lattice design optimisation
- Almost no experience with beam in these components
 - MICE has been a limited model (no RF, single muons, ...)
⇒ Need to have a test facility
Site Considerations

• Are open to any site proposed for the muon collider test facility

• However, design depends on available proton infrastructure
 • proton energy, pulse structure, ...

• Resources will be limited
 • Appears hard to support several studies of proton infrastructure with the design study

• Need to develop for one example site
 • Consider covering proton infrastructure and specific civil engineering by CERN
 • i.e. workpackage with no EU resources
 • Allows others to include similar studies for other sites
 • at their own cost
Main proton injectors considered
• PS booster provides 1.4/2 GeV protons
• PS provides 20 and 26 GeV protons with fast extraction
• SPS provides up to 460 GeV protons

Currently focus on PS and still consider SPS
• PSB energy is quite low
• PS energy is closer to real collider (5 - 8 GeV)
• Interferes less with other users than SPS
• SPS at 100 GeV has been considered for nuSTORM and provides highest pulse energy

PS total proton pulse energy
• Full beam 4 x 10^{13} protons with 20 GeV O(10^{13}): 130 kJ
• One 20 ns bunch 1 x 10^{13} protons with 20 GeV O(10^{13}): 30 kJ
• Collider design 400 kJ
• Need to update with LIU (improved) numbers

Need to establish list of beam modes for different measurements
Demonstration Programme

Core test facility to demonstrate muon cooling
- on CERN land
- can allow for 4 MW of proton power (but would need SPL)
- Consider O(10 kW) target and beam from PS

Willingness of TIARA to support as EU Design Study
Need to define scope and involvement for EU and prepare commitments

Models and prototypes of key components
• magnets
• RF systems
• target
• ...

Programme needs to be modular
Tentative rough cost scale 500 CHF
Initial test facility material cost about 150 MCHF?

But not to forget:
• The collider justifies the demonstration programme
European Accelerator R&D Roadmap

Council charged Laboratory Directors Group (LDG) to deliver European Accelerator R&D Roadmap

Panels
- Magnets: P. Vedrine
- Plasma: R. Assmann
- RF: S. Bousson
- Muons: D. Schulte
- ERL: M. Klein

The extended LDG will deliver a report to **council**:
- The scientific drivers for R&D, and the progress needed to enable future facilities
- The current state-of-the-art, and the further steps to be taken over the next decade
- Potential deliverables and **demonstrators** for the next decade
- A **prioritised work plan**, taking into account the capabilities and interests of stakeholders
- A range of scenarios for engagement, ranging from ‘minimal investment’ to ‘maximum possible rate of progress’, with a first estimate of resources and timeline.
Muon Beam Panel

Daniel Schulte (CERN, chair)
Mark Palmer (BNL, co-chair)
Taba Arndt (KIT)
Antoine Chance (CEA/IRFU)
Jean-Pierre Delahaye (retired)
Angeles Faus-Golfe (IN2P3/IJClab)
Simone Gilardoni (CERN)
Philippe Lebrun (European Scientific Institute)
Ken Long (Imperial College London)
Elias Metral (CERN)
Nadia Pastrone (INFN-Torino)
Lionel Quettier (CEA/IRFU), Magnet Panel link
Tor Raubenheimer (SLAC)
Chris Rogers (STFC-RAL)
Mike Seidel (EPFL and PSI)
Diktys Stratakis (FNAL)
Akira Yamamoto (KEK and CERN)

Contributors:
Alexej Grudiev (CERN), RF panel link
Roberto Losito (CERN), Test Facility link
Donatella Lucchesi (INFN) MDI link

https://muoncollider.web.cern.ch/organisation

Work with collaboration, panel and community meetings:

- **May 20+21:** Identify R&D challenges, first scope
- **July 12-14:** Identify the R&D for next five years, internal priorities, resource estimates
- **July 16:** Submission of Interim Report to LDG
- **September:** Final R&D list, scenarios, may still answer questions of LDG
- **September LDG submits Interim Report to Council**
- **December Final Report submitted to Council**
Community Meeting Conveners

Some replies still missing

- **Radio-Frequency (RF):** Alexej Grudiev, Jean-Pierre Delahaye, Derun Li, Akira Yamamoto, (suggestion from Alexej).
- **Magnets:** Lionel Quettier, Toru Ogitsu, Soren Prestemon, Sasha Zlobin, (Riccardo Musenich, Stefania Farinon).
- **Muon Production and Cooling (MPC):** Chris Rogers, Marco Calviani, Chris Densham, Diktys Stratakis, Akira Sato, Katsuya Yonehara.
- **Proton Complex (PC):** Simone Gilardoni, Hannes Bartosik, Frank Gerigk, Natalia Milas, (Sarah Cousineau for September).
- **Beam Dynamics (BD):** Elias Metral, Tor Raubenheimer, Rob Ryne.
- **Radiation Protection (RP):** Claudia Ahdida.
- **Parameters, Power and Cost (PPC):** Daniel Schulte, Mark Palmer, Philippe Lebrun, Mike Seidel, Vladimir Shiltsev, Jingyu Tang, Akira Yamamoto
- **Machine Detector Interface (MDI):** Donatella Lucchesi, Christian Carli, Anton Lechner, Nicolai Mokhov, Nadia Pastrone.
- **Synergy:** Kenneth Long, Roger Ruber, Koichiro Shimomura.
- **Test Facility (TF):** Roberto Losito, Alan Bross, Tord Ekelof.
Detector Technologies

Will rely largely on European Detector R&D Roadmap (ECFA)
• Will provide link persons to relevant working groups

Currently consider the following most important (N. Pastrone)
• solid state tracking
• calorimetry
• emerging technologies
• electronics and in detector processing

Will also include other regions

Physics potential studies and machine background studies will verify if performances similar to CLIC and FCC-hh are sufficient
US Snowmass/P5

Submitted a number of proposals for white papers
- physics potential
- detector
- accelerator

Growing interest in the community
Aiming to coordinate the regional efforts

International Muon Collider Collaboration (corresponding author: D. Schulte)
Muon Collider Facility (c.a.: D. Schulte)
Muon Collider Physics Potential (c.a.: A. Wulzer)
Machine Detector Interface Studies at a Muon Collider (c.a.: D. Lucchesi)
Muon Collider experiment: requirements for new detector R&D and reconstruction tools
(c.a.: N. Pastrone)
A Proton-Based Muon Source for a Collider at CERN (c.a.: Chr. Rogers)
Issues and Mitigations for Advanced Muon Ionization Cooling (c.a.: Chr. Rogers)
LEMMA: a positron driven muon source for a muon collider (c.a.: M.E. Biagini)
Applications of Vertical Excursion FFAs(vFFA)and Novel Optics (c.a.: Sh. Machida)
Physics Potential

The muon collider physics potential emerges from a variety of measurements and searches that offer opportunities for new physics discoveries that are comparable or superior to “standard” future colliders.

Our studies must be illustrative of the MC potential for new physics exploration in multiple directions.

Our plans for Snowmass21:

https://indico.cern.ch/event/944012/contributions/3989516/attachments/2091456/3518021/Physics_SnowMass_LoI.pdf

Letter of Interest: Muon Collider Physics Potential

On behalf of the forming muon collider international collaboration [1]

We describe the plan for muon collider physics studies in order to provide inputs to the Snowmass process. The goal is a first assessment of the muon collider physics potential. The target accelerator design center of mass energies are 3 and 10 TeV or more [2]. Our study will consider energies $E_{CM} = 3, 10, 14$, and the more speculative $E_{CM} = 30$ TeV, with reference integrated luminosities $\mathcal{L} = (E_{CM}/10$ TeV)$^2 \times 10$ ab$^{-1}$ [3]. Variations around the reference values are encouraged, aiming at an assessment of the required luminosity of the project based on physics performances. Recently, the physics potentials of several future collider options have been studied systematically [4], which provide reference points for comparison for our studies.
Physics Potential

The muon collider physics potential emerges from a variety of measurements and searches that offer opportunities for new physics discoveries that are comparable or superior to “standard” future colliders.

Our studies must be illustrative of the MC potential for new physics exploration in multiple directions.

And we are not alone

MUON COLLIDER: A WINDOW TO NEW PHYSICS

Beyond the Standard Model with High-Energy Lepton Colliders

Letter of Interest: EW effects in very high-energy phenomena

High-Energy Physics at the Muon Collider: Aiming for Precision at the Highest Energies

Muon Collider: Study of Higgs couplings and self-couplings precision
Global Collaboration

We do see this as a global effort
• are ready to improve
• profit from US expertise on the collider
• profit from Japanese expertise on muons
• new enthusiasm in Europe, revived enthusiasm in the US, hopefully enthusiasm in Japan

Submitted a number of proposals for white papers to Snowmass
• physics potential
• detector
• accelerator

Will be ready to support any other decision making processes

Ideally, we will form a common collaboration with different proposed sites
Conclusion

The muon is a unique promising option at highest lepton energies

We need to fully explore the physics case, which goes well beyond 3 TeV (studied for CLIC)

Have to address the feasibility

A great challenge but also a great opportunity

Community meeting July 12-14:
https://indico.cern.ch/event/1043242/

Web page: http://muoncollider.web.cern.ch

Mailing lists:

MUONCOLLIDER_DETECTOR_PHYSICS@cern.ch,
MUONCOLLIDER_FACILITY@cern.ch

go to https://e-groups.cern.ch and search for groups with “muoncollider” to subscribe

Many thanks to all that contributed
MAP collaboration
MICE collaboration
LEMod team
Muon collider working group
European Strategy Update
LDG
Muon collider collaboration
...
Reserve
Memorandum of Cooperation

Basically ready, waiting for final polishing

CERN is initially hosting the study

• International collaboration board (ICB) representing all partners
 – elect chair and study leader
 – can invite other partners to discuss but not vote (to include institutes that cannot sign yet)

• Study leader
• Advisory committee reporting to ICB

Addenda to describe actual contribution of partners
Linear Collider Luminosity

For constant technology

• keep bunch charge and length constant

• emittances and betafunctions are constant
 – same beam quality and same focusing
 – these are not directly linked to the acceleration technology
 • emittance is determined by damping rings
 • and degradation during acceleration
 • betafunction is quality of the focusing system
 – actually becomes harder at higher energies
 • more emittance degradation
 • harder to focus beam because of synchrotron radiation in focusing system
 • actually already visible at CLIC at 3 TeV

\[\mathcal{L} \propto \frac{N}{\sqrt{\beta_x \epsilon_x}} \frac{1}{\sqrt{\beta_y \epsilon_y}} P_{beam} \]

⇒ Luminosity per beam power independent of energy
Linear Collider Luminosity

CLIC requires about 300 MW of wall plug power for the RF to produce 28 MW of beam power and 300 about MW for other systems (e.g. magnets)

$$\mathcal{L} \propto \frac{N}{\sqrt{\beta_x \epsilon_x}} \frac{1}{\sqrt{\beta_y \epsilon_y}} P_{beam}$$

For CLIC about **190 MW beam power** to reach $40 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$ at 14 TeV

If we consider only luminosity above 99% of nominal centre-of-mass energy, we need about **570 MW beam power**

Efficiency from wall plug power into RF systems to beam power is $O(10\%)$

- so $O(2-6 \text{ GW})$ of **total power** consumption

Need to add the other systems (which also will increase compared to 300 MW)
Longitudinal Cooling/Emittance Exchange

Combined with transverse cooling at beginning

Several options considered

Allows 6-D cooling
Physics Potential

The muon collider physics potential emerges from a variety of measurements and searches that offer opportunities for new physics discoveries that are comparable or superior to “standard” future colliders.

Our studies must be illustrative of the MC potential for new physics exploration in multiple directions.

- **Direct search of heavy particles**: SUSY-inspired, WIMP, VBF production, 2->1
- **High energy measurements**: difermion, diboson, EFT, Higgs compositeness
- **High rate Higgs production**: Higgs single and self-couplings, rare Higgs decays, exotic decays
Few Preliminary Results

Higgs 3-linear coupling: $\delta \kappa_\lambda = (5\%, 3.8\%, 1.6\%)$ for $E = (10, 14, 30) \text{ TeV}$

[FCC reach is from 3.5 to 8.1\% depending on systematics assumptions]

Higgs compositeness scale: $(38, 53, 115) \text{ TeV}$ for $E = (10, 14, 30) \text{ TeV}$

[Buttazzo, Franceschini, Wulzer, to appear]

[other F.C.: from 20 to 40 TeV depending on model]
Community Meeting Working Groups

Working groups and conveners (contact Panel members in blue)

- **RF:** Alexej Grudiev, Derun Li, Jean-Pierre Delahaye, Akira Yamamoto
- **Magnets:** Lionel Quettier, Soren Prestemon, Sasha Zlobin
- **High-energy complex:** Antoine Chance, Scott Berg, Alex Bogacz, Shinji, Machida, Christian Carli, Eliane Gianfelice-Wendt, Angeles Faus-Golfe
- **Muon production and cooling:** Chris Rogers, Diktys Stratakis, Marco Calviani, Chris Densham, Katsuya Yonehara
- **Proton complex:** Simone Gilardoni, Frank Gerigk
- **Beam Dynamics:** Elias Metral, Rob Ryne, Tor Raubenheimer
- **Radiation protection and other technologies:** Roberto Losito, Claudia Ahdida, Vladimir Shiltsev, Philippe Lebrun, Mike Seidel
- **MDI:** Donatella Lucchesi, Nicolai Mokhov, Christian Carli, Nadia Pastrone
- **Synergy:** Kenneth Long

- **Test facility:** Roberto Losito
- **Parameters etc.:** Mark Palmer, Daniel Schulte
Key Challenge Areas

10+ TeV is uncharted territory

• **Physics potential evaluation**

• **Impact on the environment**
 – The *neutrino flux mitigation* and its impact on the site

• The impact of **machine induced background** on the detector, as it might limit the physics reach.

• **High-energy systems** after the cooling (acceleration, collision, …)
 – This can limit the energy reach via cost, power and beam quality

• **High-quality beam production** of cooled muon beam
 – MAP did study this in detail
 – Need to optimise and prepare test facility

• **Integrated Collider Design** with choices, parameters, trade-offs
 – need to cover all accelerator areas
Neutrino Flux Mitigation

Legal limit 1 mSv/year
MAP goal < 0.1 mSv/year
Our goal: arcs below threshold for legal procedure < 10 μSv/year
LHC achieved < 5 μSv/year

3 TeV, 200 m deep tunnel is about OK

Need mitigation of arcs at 10+ TeV: idea of Mokhov, Ginneken to move beam in aperture
our approach: move collider ring components, e.g. vertical bending with 1% of main field

Opening angle ± 1 mrad

14 TeV, in 200 m deep tunnel comparable to LHC case

Need to study mover system, magnet, connections and impact on beam

Working on different approaches for experimental insertion
MDI

Need to show that we can expect to extract the physics

Main background sources
• Muon decay products (40,000 muons/m/crossing at 14 TeV)
 – tertiary muons produced far from collision point
 – showers products produced in final triplets
• Beam-beam background

Mitigation methods
• masks
• detector granularity
• detector timing
• solenoid field
• event reconstruction strategies
• ...
Need to ensure they do not compromise physics

Background changes while beam decays
• parts of the luminosity delivered with lower background
Key High-energy Systems

- Lattice designs
 - in particular IP and collider ring, accelerator rings, also linacs
- Longitudinal beam dynamics along complex
 - including single bunch beam loading
- Collective effects estimates
 - not sure that they were explored completely
- Final triplet magnets
 - drive the luminosity, require large aperture and high gradient
- Collider arc magnets
 - key cost driver, large aperture, radiation load, vertical bending field, impact of mover system?
- RCS fast-ramping magnets and power system
 - Cost driver
 - Efficient energy recovery from magnetic field, low losses
- FFA magnet and optics design
- Mitigation of beam loss
 - Interaction region and detector shielding
 - In collider ring at 10 TeV about 5 MW (500 W/m), leads to 35 MW of cryo power for 1% shielding inefficiency
 - O(200) kW in cold accelerator parts, goal 10% inefficiency or better
- RF
 - very high single-bunch beam loading
 - efficiency
- Mover system
 - also impact on components
Key Muon Production and Cooling

- Lattice design optimisation
 - Do not yet reach the target transverse emittance
 - Most muons are lost here
 - Room to optimise the cooling system for emittance and muon survival

- Highest-field solenoid for final cooling
 - Aim for 40+ T

- Target solenoid
 - High field, large aperture, high radiation

- Other cooling magnets
 - High field, large aperture, required for test facility

- High-gradient, RF in strong magnetic field

- Have to limit peak power

- Cooling cell design
 - Tight integration of components

- Target
 - Energy per pulse (also power, but muons per bunch is critical and cannot be mitigated by multiple targets)
 - Challenge depends on muon survival, scaling of MAP parameter tables 1.3 MW, other estimates up to 4 MW
 \[\Rightarrow \] Best to plan for some reserve

- Radiation from target

- Proton complex
 - Challenge is to compress proton pulse
Demonstration Programme

Core test facility to demonstrate muon cooling
- needs muon production with reasonable intensity but below real collider (e.g. 10 kW target)
- Identify potential sites
 - At least one good candidate at CERN
 - ESS, US labs?

Willingness of TIARA to supports as EU Design Study
Need to define scope and involvement for EU and prepare commitments

Models and prototypes of key components
• magnets
• RF systems
• target
• ...

Programme needs to be modular
Tentative rough cost scale 500 CHF
Initial test facility material cost about 150 MCHF?

But not to forget:
• The collider justifies the demonstration programme
Test Facility Goals

Muon capture and cooling are the key novel ingredients
⇒ Experimental validation of theoretical studies, mainly in longitudinal (energy straggling)

Horn vs. solenoid

MICE demonstrated the very principle
• but need to further the experiment

LiH vs option to test LH

Key R&D issues
• Inclusion of RF for 6D cooling
• Good statistics, real muon bunches

• Very thin windows for absorbers are needed
 • Be, mylar, ...
• Very high RF gradients in a magnetic field
 • 50 MV/m at 800 MHz demonstrated but very specific spearhead technology
• High-field solenoids
• Instrumentation, vacuum, cryogenics, cooling, alignment, ...

• Full integration of components
 • superconducting magnets and normal-conducting RF
 • RF and absorber windows, vacuum, sparks
Conclusion

• Muon colliders could be a unique opportunity for a high-energy lepton collider

• Face important challenges

• Need to develop concept to a maturity level that allows to make informed choices by the next ESPPU and other strategy processes

• Have the opportunity to define a work programme

• Let us do a good job
 – in spite of the short timescale
 – and the fact that half of us are still learning and the other half is only allowed a limited amount of work
Memorandum of Cooperation

Basically ready, waiting for final polishing

CERN is initially hosting the study

- International collaboration board (ICB) representing all partners
 - elect chair and study leader
 - can invite other partners to discuss but not vote (to include institutes that cannot sign yet)
- Study leader
- Advisory committee reporting to ICB

Addenda to describe actual contribution of partners
Example Basic Parameters

<table>
<thead>
<tr>
<th>Parameter common for all RCS</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{static} (NiTi)</td>
<td>T</td>
</tr>
<tr>
<td>B_{ramp}</td>
<td>T</td>
</tr>
<tr>
<td>Ramping dipole gap size (seems much larger than in MAP)</td>
<td>cm</td>
</tr>
<tr>
<td>Effective dipole filling factor (could be with combined function magnets)</td>
<td>%</td>
</tr>
<tr>
<td>G</td>
<td>MV/m</td>
</tr>
<tr>
<td>f_{RF}</td>
<td>MHz</td>
</tr>
<tr>
<td>RF filling factor</td>
<td>%</td>
</tr>
<tr>
<td>Q</td>
<td>10^{10}</td>
</tr>
<tr>
<td>Mains power to RF efficiency</td>
<td>%</td>
</tr>
<tr>
<td>Beam loading compensation / bucket forming</td>
<td>ignored</td>
</tr>
<tr>
<td>Fraction of beam loss in cold parts at 2 K after mitigation</td>
<td>%</td>
</tr>
<tr>
<td>Static heat load per m of cold system</td>
<td>W</td>
</tr>
<tr>
<td>Power consumption per W of 2 K heat load</td>
<td>W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>8x4</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>ignored</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>700</td>
</tr>
</tbody>
</table>
Example of RCS Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>unit</th>
<th>RCS 1</th>
<th>RCS 2</th>
<th>RCS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>GeV</td>
<td>60</td>
<td>300</td>
<td>1500</td>
</tr>
<tr>
<td>E_2</td>
<td>GeV</td>
<td>300</td>
<td>1500</td>
<td>5000</td>
</tr>
<tr>
<td>$<G>$</td>
<td>MV/m</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>N_{in}</td>
<td>10^{12}</td>
<td>2.82</td>
<td>2.48</td>
<td>2.18</td>
</tr>
<tr>
<td>N_{out}</td>
<td>10^{12}</td>
<td>2.48</td>
<td>2.18</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Defines muon survival
Approximate Example Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>unit</th>
<th>RCS 1</th>
<th>RCS 2</th>
<th>RCS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>GeV</td>
<td>60</td>
<td>300</td>
<td>1500</td>
</tr>
<tr>
<td>E_2</td>
<td>GeV</td>
<td>300</td>
<td>1500</td>
<td>5000</td>
</tr>
<tr>
<td>$<G>$</td>
<td>MV/m</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>N_{in}</td>
<td>10^{12}</td>
<td>2.82</td>
<td>2.48</td>
<td>2.18</td>
</tr>
<tr>
<td>N_{out}</td>
<td>10^{12}</td>
<td>2.48</td>
<td>2.18</td>
<td>1.8</td>
</tr>
<tr>
<td>L_{static}</td>
<td>km</td>
<td>0.47</td>
<td>2.35</td>
<td>8.5</td>
</tr>
<tr>
<td>L_{ramp}</td>
<td>km</td>
<td>1.26</td>
<td>6.28</td>
<td>18.3</td>
</tr>
<tr>
<td>L_{RF}</td>
<td>km</td>
<td>0.28</td>
<td>1.38</td>
<td>1.9</td>
</tr>
<tr>
<td>C</td>
<td>km</td>
<td>2.8</td>
<td>13.8</td>
<td>38</td>
</tr>
<tr>
<td>beam turns</td>
<td></td>
<td>44</td>
<td>44</td>
<td>92</td>
</tr>
<tr>
<td>T_{ramp}</td>
<td>ms</td>
<td>0.4</td>
<td>2</td>
<td>11.67</td>
</tr>
</tbody>
</table>

- All lengths follow from magnet field, filling factor and energy choices.
- RF length follows from gradient, filling factor and average gradient target.
- Add a bit for injection/extraction.
- Beam turns to achieve energy (slight adjustment required).
- Ramp time from circumference and turns.
Approximate Example Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>unit</th>
<th>RCS 1</th>
<th>RCS 2</th>
<th>RCS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>GeV</td>
<td>60</td>
<td>300</td>
<td>1500</td>
</tr>
<tr>
<td>E_2</td>
<td>GeV</td>
<td>300</td>
<td>1500</td>
<td>5000</td>
</tr>
<tr>
<td>$<G>$</td>
<td>MV/m</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>N_{in}</td>
<td>10^{12}</td>
<td>2.82</td>
<td>2.48</td>
<td>2.18</td>
</tr>
<tr>
<td>N_{out}</td>
<td>10^{12}</td>
<td>2.48</td>
<td>2.18</td>
<td>1.8</td>
</tr>
<tr>
<td>L_{static}</td>
<td>km</td>
<td>0.47</td>
<td>2.35</td>
<td>8.5</td>
</tr>
<tr>
<td>L_{ramp}</td>
<td>km</td>
<td>1.26</td>
<td>6.28</td>
<td>18.3</td>
</tr>
<tr>
<td>L_{RF}</td>
<td>km</td>
<td>0.28</td>
<td>1.38</td>
<td>1.9</td>
</tr>
<tr>
<td>C</td>
<td>km</td>
<td>2.8</td>
<td>13.8</td>
<td>38</td>
</tr>
<tr>
<td>beam turns</td>
<td></td>
<td>44</td>
<td>44</td>
<td>92</td>
</tr>
<tr>
<td>T_{ramp}</td>
<td>ms</td>
<td>0.4</td>
<td>2</td>
<td>11.67</td>
</tr>
<tr>
<td>P_{RF}</td>
<td>MW</td>
<td>509</td>
<td>450</td>
<td>192</td>
</tr>
<tr>
<td>T_{RF}</td>
<td>ms</td>
<td>0.8</td>
<td>4.3</td>
<td>19.1</td>
</tr>
<tr>
<td>$\eta_{RF-to-beam}$</td>
<td>%</td>
<td>50</td>
<td>47</td>
<td>61</td>
</tr>
</tbody>
</table>

RF power from average beam current (variation is not taken into account nor bucket-forming voltage)
Approximate Example Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>unit</th>
<th>RCS 1</th>
<th>RCS 2</th>
<th>RCS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>GeV</td>
<td>60</td>
<td>300</td>
<td>1500</td>
</tr>
<tr>
<td>E_2</td>
<td>GeV</td>
<td>300</td>
<td>1500</td>
<td>5000</td>
</tr>
<tr>
<td><G></td>
<td>MV/m</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>N_{in}</td>
<td>10^{12}</td>
<td>2.82</td>
<td>2.48</td>
<td>2.18</td>
</tr>
<tr>
<td>N_{out}</td>
<td>10^{12}</td>
<td>2.48</td>
<td>2.18</td>
<td>1.8</td>
</tr>
<tr>
<td>L_{static}</td>
<td>km</td>
<td>0.47</td>
<td>2.35</td>
<td>8.5</td>
</tr>
<tr>
<td>L_{ramp}</td>
<td>km</td>
<td>1.26</td>
<td>6.28</td>
<td>18.3</td>
</tr>
<tr>
<td>L_{RF}</td>
<td>km</td>
<td>0.28</td>
<td>1.38</td>
<td>1.9</td>
</tr>
<tr>
<td>C</td>
<td>km</td>
<td>2.8</td>
<td>13.8</td>
<td>38</td>
</tr>
<tr>
<td>beam turns</td>
<td></td>
<td>44</td>
<td>44</td>
<td>92</td>
</tr>
<tr>
<td>T_{ramp}</td>
<td>ms</td>
<td>0.4</td>
<td>2</td>
<td>11.67</td>
</tr>
<tr>
<td>dB/dt</td>
<td>kT/s</td>
<td>10</td>
<td>2</td>
<td>0.34</td>
</tr>
<tr>
<td>E_{ramp}</td>
<td>MJ</td>
<td>6.4</td>
<td>32</td>
<td>93.3</td>
</tr>
<tr>
<td>P_{ramp}</td>
<td>GW</td>
<td>32</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>Beam loss</td>
<td>W/m</td>
<td>20</td>
<td>17.8</td>
<td>31.4</td>
</tr>
</tbody>
</table>

Magnet ramp rate from ramp time
energy in magnetic field from aperture, field and length
Power flow during linear ramp proportional to average RF gradient
Beam loss follows from number of turns and average current
Key Power in Collider Ring and RCS

- Electrons/positrons from muon decay in collider ring
 - at 10 TeV about 5 MW (500 W/m)
 - Shielding goal: 1% to reach magnets (at 2 K)
 - need 35 MW of power for cryo-system
 - about 1W/m static heat load requires 7 MW power for cryogenics

- RCS3 fast-ramping magnets
 - Goal: limit total loss to 10 MJ per cycle (tbc)
 - Need > 90% energy recovery, including losses in magnets, distribution etc.

- RCS3 RF
 - ignore beam loading / bucket forming
 - beam extracts 2.2x stored energy in cavities
 - RF to beam efficiency is 60%
 - Mains to RF assume 60%
 - total of 26 MW

- RCS3 cryogenics
 - Beam losses in cold systems: 32 W/m x 13.5 km ~425 kW
 - assume mitigation down to 10% at 2 K
 - 30 MW power for cryogenics due to beam loss
 - 7 MW for static losses
 - 7 MW of power for cryogenics to remove RF power loss with Q=2 x 10^10
 - need to also develop shielding for this
 - but maybe later?

- Total goal 47 MW + 65 MW for beam loss cooling + 50 MW for ramping magnets
Key Power in RCS1 and RCS2

• Fast-ramping magnets
 – 38.4 MJ in magnetic field
 – Goal: limit total loss to 5 MJ per cycle (tbc)
 – Need > 90% energy recovery, including losses in magnets, distribution etc.

• RF
 – ignore beam loading / bucket forming
 – 5 x (0.8 ms x 509 MW + 4.3 ms x 450 MW) / 0.6 = 11.7 MW
 – RF to beam efficiency is 50% and 47 %
 – Mains to RF assume 60%
 – total of 11.7 MW

• Cryogenics
 – Beam losses in cold systems: 20 and 17.8 W/m
 – assume mitigation down to 10% at 2 K
 – 7.7 MW power for cryogenics due to beam loss
 – 4.25 MW for static losses
 – 1.1 MW of power for cryogenics to remove RF power loss with Q=2 x 10^{10}
 – need to also develop shielding for this
 – but maybe later?

• Total goal 17 MW + 7.7 MW for beam loss cooling + 25 MW for ramping magnets
Approximate Example Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>unit</th>
<th>RCS 1</th>
<th>RCS 2</th>
<th>RCS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>GeV</td>
<td>60</td>
<td>300</td>
<td>1500</td>
</tr>
<tr>
<td>E_2</td>
<td>GeV</td>
<td>300</td>
<td>1200</td>
<td>5000</td>
</tr>
<tr>
<td>$<G>$</td>
<td>MV/m</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>N_{in}</td>
<td>10^{12}</td>
<td>2.82</td>
<td>2.48</td>
<td>2.18</td>
</tr>
<tr>
<td>N_{out}</td>
<td>10^{12}</td>
<td>2.48</td>
<td>2.18</td>
<td>1.8</td>
</tr>
<tr>
<td>L_{static}</td>
<td>km</td>
<td>0.47</td>
<td>2.35</td>
<td>8.5</td>
</tr>
<tr>
<td>L_{ramp}</td>
<td>km</td>
<td>1.26</td>
<td>6.28</td>
<td>18.3</td>
</tr>
<tr>
<td>L_{RF}</td>
<td>km</td>
<td>0.28</td>
<td>1.38</td>
<td>1.9</td>
</tr>
<tr>
<td>C</td>
<td>km</td>
<td>2.8</td>
<td>13.8</td>
<td>38</td>
</tr>
<tr>
<td>Beam turns</td>
<td></td>
<td>44</td>
<td>44</td>
<td>92</td>
</tr>
<tr>
<td>T_{ramp}</td>
<td>ms</td>
<td>0.4</td>
<td>2</td>
<td>11.67</td>
</tr>
<tr>
<td>P_{RF}</td>
<td>MW</td>
<td>509</td>
<td>450</td>
<td>192</td>
</tr>
<tr>
<td>T_{RF}</td>
<td>ms</td>
<td>0.8</td>
<td>4.3</td>
<td>19.1</td>
</tr>
<tr>
<td>$\eta_{RF-to-beam}$</td>
<td>%</td>
<td>50</td>
<td>47</td>
<td>61</td>
</tr>
<tr>
<td>dB/dt</td>
<td>kT/s</td>
<td>10</td>
<td>2</td>
<td>0.34</td>
</tr>
<tr>
<td>Beam loss</td>
<td>W/m</td>
<td>20</td>
<td>17.8</td>
<td>31.4</td>
</tr>
</tbody>
</table>
Muon Beam Panel Roadmap Milestones

<table>
<thead>
<tr>
<th>Date</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 20+21 2021</td>
<td>Community meeting to collect R&D items lists</td>
</tr>
<tr>
<td>First week of June 2021</td>
<td>Panel provides R&D list to LDG</td>
</tr>
<tr>
<td>June Council 2021</td>
<td>LDG presents R&D lists as background</td>
</tr>
<tr>
<td>June 2021</td>
<td>LDG decision on structure, content and format of interim reports</td>
</tr>
<tr>
<td>Mid July 2021</td>
<td>Community meeting to define required scope</td>
</tr>
<tr>
<td>Late July 2021</td>
<td>Panel interim report to LDG</td>
</tr>
<tr>
<td>September Council 2021</td>
<td>LDG provides interim report to Council</td>
</tr>
<tr>
<td>December Council 2021</td>
<td>LDG provides final report to Council</td>
</tr>
</tbody>
</table>

Very short timescale

Need to collect ideas on scope early
Key Challenges

Drives the **beam quality**
quite detailed MAP design
still challenging design with
challenging components
optimise as much as possible

Cost and **power** consumption drivers, limit energy reach
e.g. 30 km accelerator for 10/14 TeV, 10/14 km collider ring
Also impacts **beam quality**

D. Schulte
Muon COLLider, KEK-PH lectures and workshops, June 2021
R&D Challenges

Drives the **beam quality**
- > 30 T solenoids
- Production target, solenoid, protection
- RF in magnetic field
- Compact engineering for muon survival
- novel concept
- ...

Cost and **power** consumption limit energy reach
- Superconducting collider ring magnets
- Protection of collider (and other) magnets from muon decays
- Fast ramping magnets with energy recovery
- Efficient RF for high bunch charge
- FFA

Neutrino flux on Earth surface limits energy and site choice
MDI might limits energy reach

Integrated coherent concept/parameters
A Not Very Perfect Example

- The final focus magnets. The final focus quadrupoles limit the beta-function in the collision point and hence the luminosity. They become more challenging at higher collider energies, since the target beta-functions decrease and the beam becomes more rigid. Therefore these magnets will be one of the key limitations toward high energy and an important design driver. Currently, apertures of up to 30-50 cm radius at 10 TeV and around 10 cm at 3 TeV are envisaged, but this has to be revised. The magnet team should propose ambitious but reasonable goals for the quadrupolar field as a function of radius for the different technologies, assuming we invest into the R&D. Obviously, one then will have to confirm this goal by detailed work. I think we need a design by 2025. Proposed goals: Parametric target field model for design optimisation (2021); conceptual design (2025)

I wrote the text, magnet experts have to write a proper version
Text in italics is comments on how to expand.

D. Schulte
Muon COllider, KEK-PH lectures and workshops, June 2021