Precise Standard Model predictions for **B** decays

Nico Gubernari

Jahrestreffen der deutschen LHCb-Gruppen TU Dortmund, 8-Oct-2021

Introduction

Flavour changing currents

flavour changing charged currents (FCCC) occur at tree level (mediated by W^{\pm}) in the SM

flavour changing neutral currents (FCNC) absent at tree level in the SM FCNC are loop, GIM and CKM **suppressed in the SM**

FCNC **sensitive to new physics** contributions probe the SM through **indirect searches**

Flavour changing currents

flavour changing charged currents (FCCC) occur at tree level (mediated by W^{\pm}) in the SM

flavour changing neutral currents (FCNC) absent at tree level in the SM FCNC are loop, GIM and CKM **suppressed in the SM**

FCNC **sensitive to new physics** contributions probe the SM through **indirect searches**

integrate out DOF heavier than the *b* ↓ weak effective field theory

EFT

Hadronic matrix elements

study **B-meson decays to test the SM** (neglect QED corrections)

FCCC
$$\langle D^{(*)}\ell \nu_{\ell} | \mathcal{O}_{eff} | B \rangle = \langle \ell \nu_{\ell} | \mathcal{O}_{lep} | 0 \rangle \langle D^{(*)} | \mathcal{O}_{had} | B \rangle$$

FCNC $\langle K^{(*)}\ell \ell | \mathcal{O}_{eff} | B \rangle = \langle \ell \ell | \mathcal{O}_{lep} | 0 \rangle \langle K^{(*)} | \mathcal{O}_{had} | B \rangle + \text{non-fact.}$

leptonic matrix elements: perturbative objects, high accuracy

hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties

Hadronic matrix elements

study **B-meson decays to test the SM** (neglect QED corrections)

FCCC
$$\langle D^{(*)}\ell\nu_{\ell}|\mathcal{O}_{eff}|B\rangle = \langle \ell\nu_{\ell}|\mathcal{O}_{lep}|0\rangle\langle D^{(*)}|\mathcal{O}_{had}|B\rangle$$

FCNC $\langle K^{(*)}\ell\ell|\mathcal{O}_{eff}|B\rangle = \langle \ell\ell|\mathcal{O}_{lep}|0\rangle\langle K^{(*)}|\mathcal{O}_{had}|B\rangle + \text{non-fact.}$

leptonic matrix elements: perturbative objects, high accuracy

hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties

decay amplitudes depend on:

 local hadronic matrix elements (form factors)
 (K^(*) | O(0) | B)
 (D^(*) | O(0) | B)

• nonlocal hadronic matrix elements (soft gluon contributions to the charm-loop) $\langle K^{(*)} | \mathcal{O}(0, x) | B \rangle$

Interesting observables

test the lepton flavour universality to test the SM

lepton flavour universality = the 3 lepton generations have the same couplings to the gauge bosons

violations of lepton flavour universality \Rightarrow new physics

observables to test LFU

$$R_{D^{(*)}} = \frac{\Gamma(B \to D^{(*)} \nu \tau)}{\Gamma(B \to D^{(*)} \nu \mu)} \qquad \qquad R_{K^{(*)}} = \frac{\Gamma(B \to K^{(*)} \mu^+ \mu^-)}{\Gamma(B \to K^{(*)} e^+ e^-)}$$

another test of the SM: angular observables in $B \rightarrow K^* \ell \ell$ (e.g. P'_5)

right choice of observables can reduce the hadronic uncertainties

B-anomalies

B-anomalies = tension between experimental measurements and theoretical predictions in B-meson decays involving different observables ($R_{D^{(*)}}, R_{K^{(*)}}, P'_{5}$...) and experiments

Standard Model predictions

Methods to compute hadronic matrix elements 5/19

non-perturbative techniques are needed

to compute hadronic matrix elements

Methods to compute hadronic matrix elements 5/19

non-perturbative techniques are needed

to compute hadronic matrix elements

numerical evaluation of correlators in a finite and discrete space-time

local matrix elements (usually at high q^2)

nonlocal matrix elements still work in progress

Methods to compute hadronic matrix elements 5/19

non-perturbative techniques are needed

to compute hadronic matrix elements

Lattice QCD

numerical evaluation of correlators in a finite and discrete space-time

local matrix elements (usually at high q^2)

nonlocal matrix elements still work in progress

Light-cone sum rules (LCSRs)

based on unitarity, analyticity, and quark-hadron duality approximation

need universal *B*-meson matrix elements

applicable for both local and nonlocal matrix elements (at low q^2)

Definition of the form factors

form factors (FFs) parametrize exclusive hadronic matrix elements

$$\langle P(k) | \bar{q}_1 \gamma_\mu b | B(q+k) \rangle = 2 k_\mu f_+(q^2) + q_\mu (f_+(q^2) + f_-(q^2))$$

$$\langle P(k) | \bar{q}_1 \sigma_{\mu\nu} q^\nu b | B(q+k) \rangle = \frac{i f_T(q^2)}{m_B + m_P} (q^2 (2k+q)_\mu - (m_B^2 - m_P^2) q_\mu)$$

decomposition follows from Lorentz invariance

FFs are functions of the momentum transferred q^2 (q^2 is the dilepton mass squared)

3 independent *B* to pseudoscalar meson (*P*) FFs7 independent *B* to vector meson (*V*) FFs

State of the art

Transition	Lattice QCD	LCSR
$B \rightarrow K$	high q^2	$q^2 < 12 \text{ GeV}^2$
$B \to K^*$	high q^2	$q^2 < 6 \text{ GeV}^2$
$B_s \to \phi$	high q²	$q^2 < 6 \text{ GeV}^2$
$B \rightarrow D$	high q^2	$q^2 < 0 \text{ GeV}^2$
$B \rightarrow D^*$	high q^2	$q^2 < 0 \text{ GeV}^2$
$B_s \rightarrow D_s$	whole q^2 range	$q^2 < 0 \text{ GeV}^2$
$B_s \rightarrow D_s^*$	whole q^2 range	$q^2 < 0 \text{ GeV}^2$

 $b \to s$

נ ↑

q

Combine lattice QCD and LCSRs for local FFs 8/19

obtain the FF values to the whole spectrum (no additional assumptions required) good agreement between lattice and LCSRs calculations

More on the $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs

use heavy-quark limit $(m_{b,c} \to \infty)$ to relate $B_{(s)} \to D_{(s)}$ FFs to $B_{(s)} \to D^*_{(s)}$ FFs

expand $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs in the heavy-quark limit $FF^{B \rightarrow D^{(*)}}(q^2) = c_0\xi(q^2) + c_1\frac{\alpha_s}{\pi}C_i(q^2) + c_2\frac{1}{m_b}L_i(q^2) + c_3\frac{1}{m_c}L_i(q^2) + c_4\frac{1}{m_c^2}l_i(q^2)$ $FF^{B_s \rightarrow D_s^{(*)}}(q^2) = c_0\xi^s(q^2) + c_1\frac{\alpha_s}{\pi}C_i(q^2) + c_2\frac{1}{m_b}L_i^s(q^2) + c_3\frac{1}{m_c}L_i^s(q^2) + c_4\frac{1}{m_c^2}l_i(q^2)$ include $1/m_c^2$ corrections [Bordone/Jung/van Dyk '19]

all $B \rightarrow D^{(*)}$ and $B_s \rightarrow D_s^{(*)}$ FFs parametrized in terms of 14 Isgur-Wise (IW) functions

More on the $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs

constrain IW functions with

- lattice QCD (where available)
- light-cone sum rules for the FFs
- SVZ sum rules for Isgur-Wise functions
- with and w/o exp data
- dispersive bounds

results for all $B \rightarrow D^{(*)}$ FFs and $B_s \rightarrow D_s^{(*)}$ FFs in the whole physical phase space

improved precision going beyond the $SU(3)_F$ limit

The $B \rightarrow D^{**}$ FFs

why study $B \to D^{**}$ FFs? $D^{**} = \{D_0^*, D_1', D_1, D_2^*\}$

- alternative channel to study the (anomalous) $b \rightarrow c$ transitions
- important background for the $B \rightarrow D^{(*)} \ell \nu$ measurements
- improve the determination of $|V_{cb}|$ and $|V_{ub}|$

theoretical calculations of $B\to \{D_1',D_1\}$ FFs are very challenging (both with LQCD and LCSRs)

- same quantum numbers $(J^P = 1^+)$
- almost the same mass

difficult to disentangle

extend the LCSR method to disentangle D_1 and D'_1

[NG/Khodjamirian/Mandal/Mannel w.i.p.]

More on the $b \rightarrow s$ transitions

rare decays amplitude written in term of (local) FFs and non-local FFs

$$\mathcal{A}(B \to K^{(*)}\ell\ell) = \mathcal{N}\left[\left(C_9 L_V^{\mu} + C_{10} L_A^{\mu} \right) \mathcal{F}_{\mu} - \frac{L_V^{\mu}}{q^2} \left(C_7 \mathcal{F}_{T,\mu} + \mathcal{H}_{\mu} \right) \right]$$

(local) FFs:

• combine lattice QCD (high q^2) and LCSRs (low q^2) to get good precision ~10%

non-local FFs (charm-loop effects):

- calculated using an Operator Product Expansion (OPE)
- large uncertainties \rightarrow reduce uncertainties for a better understanding of rare *B* decays

Soft-gluon contribution to the charm loop ^{13/19}

expand \mathcal{H}_{λ} in a light-cone OPE for $q^2 \ll 4m_c^2$ $\mathcal{H}_{\lambda}(q^2) = C_{\lambda}(q^2)\mathcal{F}_{\lambda}(q^2) + \tilde{C}_{\lambda}(q^2)\mathcal{V}_{\lambda}(q^2) + \cdots$

Soft-gluon contribution to the charm loop ^{13/19}

В

Charm-loop results and comparison

$\Delta C_9(q^2 =$	1 GeV ²)	KMPW2010	GvDV2019
leading pow	ver (LO $lpha_s$)	0.27	0.27
$B \to K \ell \ell$	$\mathcal{V}_{\mathcal{A}}$	$-0.09\substack{+0.06\\-0.07}$	$(1.9^{+0.6}_{-0.6}) \cdot 10^{-4}$
	\mathcal{V}_1	$0.6^{+0.7}_{-0.5}$	$(1.2^{+0.4}_{-0.4}) \cdot 10^{-3}$
$B \to K^* \ell \ell$	\mathcal{V}_2	$0.6^{+0.7}_{-0.5}$	$(2.1^{+0.7}_{-0.7}) \cdot 10^{-3}$
	\mathcal{V}_3	$1.0^{+1.6}_{-0.8}$	$(3.0^{+1.0}_{-1.0}) \cdot 10^{-3}$
$B_s \to \phi \ell \ell$	\mathcal{V}_{i}		see paper

[Khodjamirian/Mannel/Pivovarov/Wang 2010 (KMPW2010)]

- our results are two orders of magnitude smaller than in KMWP2010 (\Rightarrow smaller unc.)
- we can reproduce the analytical results given in KMWP2010 and the differences are well understood
- quick convergence of the light-cone OPE

Why such different results?

different inputs: LCDAs models depend on λ_H^2 , λ_E^2	\rightarrow	KMPW10: $\lambda_H^2 = \lambda_E^2 = 0.31 \pm 0.15 \text{ GeV}^2$ \Rightarrow twist 3 does not contributewe use $\lambda_E^2 = 0.03 \pm 0.02 \text{ GeV}^2$ $\lambda_H^2 = 0.06 \pm 0.03 \text{ GeV}^2$ \Rightarrow ~10 times smaller [Nishikawa/Tanaka 2014]
three-particle LCDAs twist expansion	\rightarrow	KMPW10: the 3-pt LCDAs twist expansion was not known
		we use Braun/Ji/Manashov 2017
independent 3-particle LCDAs considered		KMPW10: 4 Lorentz structures
	\rightarrow	all 8 independent Lorentz structures ⇒partial cancelation (new structures come with an opposite sign)

Dispersive bounds for \mathcal{H}_{λ}

16/19

light-cone OPE $q^2 \ll 4m_c^2$ $q^2 = 0$ extrapolate (exp. data) $q^2 < m_{J/\psi}^2$

Dispersive bounds for \mathcal{H}_{λ}

16/19

[BGL 1995] [CLN 1998]

light-cone OPE $q^2 \ll 4m_c^2$ $q^2 = 0$ extrapolate (exp. data) $q^2 < m_{J/\psi}^2$

- estimate truncation error using dispersive bounds
- extend method already used for local form factors to non-local form factors \mathcal{H}_{λ}

• model independent constraints on $\mathcal{H}_{\lambda} \rightarrow \text{control theoretical uncertainties}$

Parametrizations for \mathcal{H}_{λ}

• q^2 parametrization [Ciuchini et al. 2015]

$$\mathcal{H}_{\lambda}(q^2) = \mathcal{H}_{\lambda}(0) + \frac{q^2}{M_B^2} \mathcal{H}_{\lambda}^{\prime(0)} + \frac{(q^2)^2}{M_B^4} \mathcal{H}_{\lambda}^{\prime\prime}(0) + \cdots$$

• dispersion relation [KMPW2010]

$$\mathcal{H}_{\lambda}(q^2) = \mathcal{H}_{\lambda}(0) + \sum_{\psi=J/\psi,\psi(2S)} \frac{f_{\psi}\mathcal{A}_{\psi}}{M_{\psi}^2 \left(M_{\psi}^2 - q^2\right)} + \int_{4M_D^2}^{\infty} dt \frac{\rho(t)}{t(t-q^2)}$$

• *z* expansion [Bobeth/Chrzaszcz/van Dyk/Virto 2017]

$$\mathcal{H}_{\lambda}(z) = \sum_{n=0}^{\infty} c_n z^n$$

• we propose a new parametrization (z polynomials) [NG/van Dyk/Virto '20]

$$\widehat{\mathcal{H}}_{\lambda}(z) = \sum_{n=0}^{\infty} a_n p_n(z)$$

The dispersive bound

expand $\widehat{\mathcal{H}}_{\lambda}$ in orthogonal polynomials $p_n(z)$

$$\widehat{\mathcal{H}}^{B \to K}(z) = \sum_{n=0}^{\infty} a_n^{B \to K} p_n^{B \to K}(z)$$

where

$$\widehat{\mathcal{H}}^{B \to K}(z) = \mathcal{P}(z) \phi^{B \to K}(z) \ \mathcal{H}^{B \to K}_{\lambda}(z)$$

the dispersive bound reads

$$1 > 2\sum_{n=0}^{\infty} |a_n^{B \to K}|^2 + \sum_{\lambda} \left(2\sum_{n=0}^{\infty} \left| a_{\lambda,n}^{B \to K^*} \right|^2 + \sum_{n=0}^{\infty} \left| a_{\lambda,n}^{B_S \to \phi} \right|^2 \right)$$

the coefficients of the $\widehat{\mathcal{H}}_{\lambda}$ are bounded! [NG/van Dyk/Virto '20]

$$p_0^{B \to K}(z) = \frac{1}{\sqrt{2\alpha_{BK}}}$$

$$p_1^{B \to K}(z) = \left(z - \frac{\sin(\alpha_{BK})}{\alpha_{BK}}\right) \sqrt{\frac{\alpha_{BK}}{2\alpha_{BK}^2 + \cos(2\alpha_{BK}) - 1}}$$

$$p_2^{B \to K}(z) = \left(z^2 + \frac{\sin(\alpha_{BK})(\sin(2\alpha_{BK}) - 2\alpha_{BK})}{2\alpha_{BK}^2 + \cos(2\alpha_{BK}) - 1}z + \frac{2\sin(\alpha_{BK})}{2\alpha_{BK}^2 + \cos(2\alpha_{BK}) - 1}z\right)$$

 $p_3^{B \to K}(z) = \cdots$

Conclusions and outlook

Conclusion and outlook

$\boldsymbol{b} \rightarrow \boldsymbol{c}$ transitions:

- $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs lattice QCD (and LCSRs) calculations available
- use HQET and dispersive bounds for better precision
- non-local effects absent (neglect QED corrections)
- computation $B \rightarrow \{D'_1, D_1\}$ FFs w.i.p.

$b \rightarrow s$ transitions:

- $B \rightarrow K^{(*)}$ and $B_s \rightarrow \phi$ FFs lattice QCD (and LCSRs) calculations available
- non-local effects implies large uncertainties
- calculate non-local effects
- control these uncertainties (use dispersive bounds)

