Precise Standard Model predictions for \boldsymbol{B} decays

Nico Gubernari

Jahrestreffen der deutschen LHCb-Gruppen
TU Dortmund, 8-Oct-2021

Introduction

Flavour changing currents

flavour changing charged currents (FCCC) occur at tree level (mediated by $W^{ \pm}$) in the SM

flavour changing neutral currents (FCNC) absent at tree level in the SM
FCNC are loop, GIM and CKM suppressed in the SM

FCNC sensitive to new physics contributions probe the SM through indirect searches

Flavour changing currents

flavour changing charged currents (FCCC) occur at tree level (mediated by $W^{ \pm}$) in the SM
flavour changing neutral currents (FCNC) absent at tree level in the SM
FCNC are loop, GIM and CKM suppressed in the SM

FCNC sensitive to new physics contributions probe the SM through indirect searches
integrate out DOF heavier than the b \Downarrow
weak effective field theory

FCNC

Hadronic matrix elements

study \boldsymbol{B}-meson decays to test the SM (neglect QED corrections)

FCCC

$$
\begin{aligned}
\left\langle D^{(*)} \ell v_{\ell}\right| \mathcal{O}_{e f f}|B\rangle & =\left\langle\ell v_{\ell}\right| \mathcal{O}_{\text {lep }}|0\rangle\left\langle D^{(*)}\right| \mathcal{O}_{\text {had }}|B\rangle \\
\left\langle K^{(*)} \ell \ell\right| \mathcal{O}_{\text {eff }}|B\rangle & =\langle\ell \ell| \mathcal{O}_{\text {lep }}|0\rangle\left\langle K^{(*)}\right| \mathcal{O}_{\text {had }}|B\rangle+\text { non-fact. }
\end{aligned}
$$

leptonic matrix elements: perturbative objects, high accuracy
hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties

Hadronic matrix elements

study \boldsymbol{B}-meson decays to test the SM (neglect QED corrections)

> FCCC

$$
\begin{aligned}
\left\langle D^{(*)} \ell v_{\ell}\right| \mathcal{O}_{\text {eff }}|B\rangle & =\left\langle\ell v_{\ell}\right| \mathcal{O}_{\text {lep }}|0\rangle\left\langle D^{(*)}\right| \mathcal{O}_{\text {had }}|B\rangle \\
\left\langle K^{(*)} \ell \ell\right| \mathcal{O}_{\text {eff }}|B\rangle & =\langle\ell| \mathcal{O}_{\text {lep }}|0\rangle\left\langle K^{(*)}\right| \mathcal{O}_{\text {had }}|B\rangle+\text { non-fact. }
\end{aligned}
$$

leptonic matrix elements: perturbative objects, high accuracy
hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties
decay amplitudes depend on:

- local hadronic matrix elements (form factors) $\left\langle K^{(*)}\right| \mathcal{O}(0)|B\rangle$
$\left\langle D^{(*)}\right| \mathcal{O}(0)|B\rangle$
- nonlocal hadronic matrix elements
(soft gluon contributions to the charm-loop) $\left\langle K^{(*)}\right| \mathcal{O}(0, x)|B\rangle$

Interesting observables

test the lepton flavour universality to test the SM
lepton flavour universality = the 3 lepton generations have the same couplings to the gauge bosons
violations of lepton flavour universality \Rightarrow new physics
observables to test LFU
$R_{D^{(*)}}=\frac{\Gamma\left(B \rightarrow D^{(*)} v \tau\right)}{\Gamma\left(B \rightarrow D^{(*)} v \mu\right)} \quad R_{K^{(*)}}=\frac{\Gamma\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}$
another test of the SM: angular observables in $B \rightarrow K^{*} \ell \ell\left(\right.$ e.g. $\left.P_{5}^{\prime}\right)$ right choice of observables can reduce the hadronic uncertainties

B-anomalies

B-anomalies = tension between experimental measurements and theoretical predictions in B-meson decays involving different observables ($R_{D^{(+)}}, R_{K^{(+)}}, P_{5}^{\prime} \ldots$) and experiments

Standard Model predictions

Methods to compute hadronic matrix elements
non-perturbative techniques are needed
to compute hadronic matrix elements

Methods to compute hadronic matrix elements

non-perturbative techniques are needed

to compute hadronic matrix elements

Lattice QCD

numerical evaluation of correlators in a finite and discrete space-time
local matrix elements (usually at high q^{2})
nonlocal matrix elements still
work in progress

Methods to compute hadronic matrix elements

```
                non-perturbative techniques are needed
                        to compute hadronic matrix elements
```


Lattice QCD

numerical evaluation of correlators in a finite and discrete space-time
local matrix elements (usually at high q^{2})
nonlocal matrix elements still
work in progress

Light-cone sum rules (LCSRs)

based on unitarity, analyticity, and quark-hadron duality approximation need universal B-meson matrix elements
applicable for both local and nonlocal matrix elements (at low q^{2})

Definition of the form factors

form factors (FFs) parametrize exclusive hadronic matrix elements
$\langle P(k)| \bar{q}_{1} \gamma_{\mu} b|B(q+k)\rangle=2 k_{\mu} f_{+}\left(q^{2}\right)+q_{\mu}\left(f_{+}\left(q^{2}\right)+f_{-}\left(q^{2}\right)\right)$
$\langle P(k)| \bar{q}_{1} \sigma_{\mu \nu} q^{\nu} b|B(q+k)\rangle=\frac{i f_{T}\left(q^{2}\right)}{m_{B}+m_{P}}\left(q^{2}(2 k+q)_{\mu}-\left(m_{B}^{2}-m_{P}^{2}\right) q_{\mu}\right)$
decomposition follows from Lorentz invariance
FFs are functions of the momentum transferred q^{2} (q^{2} is the dilepton mass squared)

3 independent B to pseudoscalar meson (P) FFs
7 independent B to vector meson (V) FFs

State of the art

	Transition	Lattice QCD	LCSR
	$B \rightarrow K$	high q^{2}	$q^{2}<12 \mathrm{GeV}^{2}$
\uparrow	$B \rightarrow K^{*}$	high q^{2}	$q^{2}<6 \mathrm{GeV}^{2}$
\bigcirc	$B_{s} \rightarrow \phi$	high q^{2}	$q^{2}<6 \mathrm{GeV}^{2}$
	$B \rightarrow D$	high q^{2}	$q^{2}<0 \mathrm{GeV}^{2}$
\checkmark	$B \rightarrow D^{*}$	high q^{2}	$q^{2}<0 \mathrm{GeV}^{2}$
\uparrow	$B_{s} \rightarrow D_{s}$	whole q^{2} range	$q^{2}<0 \mathrm{GeV}^{2}$
	$B_{s} \rightarrow D_{s}^{*}$	whole q^{2} range	$q^{2}<0 \mathrm{GeV}^{2}$

Combine lattice QCD and LCSRs for local FFs

obtain the FF values to the whole spectrum (no additional assumptions required) good agreement between lattice and LCSRs calculations

More on the $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs

use heavy-quark limit ($m_{b, c} \rightarrow \infty$) to relate $B_{(s)} \rightarrow D_{(s)}$ FFs to $B_{(s)} \rightarrow D_{(s)}^{*}$ FFs
expand $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs in the heavy-quark limit

$$
\begin{aligned}
& F F^{B \rightarrow D^{(*)}}\left(q^{2}\right)=c_{0} \xi\left(q^{2}\right)+c_{1} \frac{\alpha_{s}}{\pi} C_{i}\left(q^{2}\right)+c_{2} \frac{1}{m_{b}} L_{i}\left(q^{2}\right)+c_{3} \frac{1}{m_{c}} L_{i}\left(q^{2}\right)+c_{4} \frac{1}{m_{c}^{2}} l_{i}\left(q^{2}\right) \\
& F F^{B_{s} \rightarrow D_{s}^{(*)}}\left(q^{2}\right)=c_{0} \xi^{s}\left(q^{2}\right)+c_{1} \frac{\alpha_{s}}{\pi} C_{i}\left(q^{2}\right)+c_{2} \frac{1}{m_{b}} L_{i}^{S}\left(q^{2}\right)+c_{3} \frac{1}{m_{c}} L_{i}^{S}\left(q^{2}\right)+c_{4} \frac{1}{m_{c}^{2}} l_{i}\left(q^{2}\right)
\end{aligned}
$$

include $1 / m_{c}^{2}$ corrections [Bordone/Jung/van Dyk '19]
all $B \rightarrow D^{(*)}$ and $B_{s} \rightarrow D_{s}^{(*)}$ FFs parametrized in terms of 14 Isgur-Wise (IW) functions

More on the $B_{(s)} \rightarrow D_{(s)}^{(*)} \mathrm{FFs}$

constrain IW functions with

- lattice QCD (where available)
- light-cone sum rules for the FFs
- SVZ sum rules for Isgur-Wise functions
- with and w/o exp data
- dispersive bounds
results for all $B \rightarrow D^{(*)}$ FFs and $B_{s} \rightarrow D_{s}^{(*)}$ FFs in the whole physical phase space

improved precision going beyond the $S U(3)_{F}$ limit
why study $B \rightarrow D^{* *}$ FFs? $D^{* *}=\left\{D_{0}^{*}, D_{1}^{\prime}, D_{1}, D_{2}^{*}\right\}$
- alternative channel to study the (anomalous) $b \rightarrow c$ transitions
- important background for the $B \rightarrow D^{(*)} \ell v$ measurements
- improve the determination of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$
theoretical calculations of $B \rightarrow\left\{D_{1}^{\prime}, D_{1}\right\}$ FFs are very challenging (both with LQCD and LCSRs)
- same quantum numbers $\left(J^{P}=1^{+}\right)$
- almost the same mass
difficult to disentangle
extend the LCSR method to disentangle $\boldsymbol{D}_{\mathbf{1}}$ and $\boldsymbol{D}_{\mathbf{1}}^{\prime}$
[NG/Khodjamirian/Mandal/Mannel w.i.p.]

More on the $b \rightarrow s$ transitions

rare decays amplitude written in term of (local) FFs and non-local FFs

$$
\mathcal{A}\left(B \rightarrow K^{(*)} \ell \ell\right)=\mathcal{N}\left[\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\boldsymbol{\mu}}-\frac{L_{V}^{\mu}}{q^{2}}\left(C_{7} \boldsymbol{\mathcal { F }}_{\boldsymbol{T}, \boldsymbol{\mu}}+\mathcal{H}_{\boldsymbol{\mu}}\right)\right]
$$

(local) FFs:

- combine lattice QCD (high q^{2}) and LCSRs (low q^{2}) to get good precision $\sim 10 \%$
non-local FFs (charm-loop effects):
- calculated using an Operator Product Expansion (OPE)
- large uncertainties \rightarrow reduce uncertainties for a better understanding of rare B decays

Soft-gluon contribution to the charm loop

$$
\begin{aligned}
& \text { expand } \mathcal{H}_{\lambda} \text { in a light-cone OPE for } q^{2} \ll 4 m_{c}^{2} \\
& \mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
\end{aligned}
$$

Soft-gluon contribution to the charm loop

$$
\begin{aligned}
& \text { expand } \mathcal{H}_{\lambda} \text { in a light-cone OPE for } q^{2} \ll 4 m_{c}^{2} \\
& \mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
\end{aligned}
$$

leading power (LO in α_{s})

+ hard gluons $\left(\alpha_{s}\right)$ corrections

Soft-gluon contribution to the charm loop

$$
\begin{aligned}
& \text { expand } \mathcal{H}_{\lambda} \text { in a light-cone OPE for } q^{2} \ll 4 m_{c}^{2} \\
& \mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
\end{aligned}
$$

leading power (LO in α_{s})

+ hard gluons (α_{s}) corrections

soft gluon correction
non-perturbative
\Rightarrow not α_{s} suppressed

Charm-loop results and comparison

$\Delta C_{9}\left(q^{2}=1 \mathrm{Ge} V^{2}\right)$		KMPW2010	GvDV2019
leading power ($\mathrm{LO} \alpha_{s}$)		0.27	0.27
$B \rightarrow K \ell \ell$	$\nu_{\mathcal{A}}$	$-0.09_{-0.07}^{+0.06}$	$\left(1.9{ }_{-0.6}^{+0.6}\right) \cdot 10^{-4}$
$B \rightarrow K^{*} \ell \ell$	ν_{1}	$0.6{ }_{-0.5}^{+0.7}$	$\left(1.2_{-0.4}^{+0.4}\right) \cdot 10^{-3}$
	ν_{2}	$0.6{ }_{-0.5}^{+0.7}$	$\left(2.1{ }_{-0.7}^{+0.7}\right) \cdot 10^{-3}$
	ν_{3}	$1.0_{-0.8}^{+1.6}$	$\left(3.0{ }_{-1.0}^{+1.0}\right) \cdot 10^{-3}$
$B_{s} \rightarrow \phi \ell \ell$	ν_{i}	-	see paper

[Khodjamirian/Mannel/Pivovarov/Wang 2010 (KMPW2010)]

- our results are two orders of magnitude smaller than in KMWP2010 (\Rightarrow smaller unc.)
- we can reproduce the analytical results given in KMWP2010 and the differences are well understood
- quick convergence of the light-cone OPE

Why such different results?

KMPW10:
$\lambda_{H}^{2}=\lambda_{E}^{2}=0.31 \pm 0.15 \mathrm{GeV}^{2}$
\Rightarrow twist 3 does not contribute
different inputs: LCDAs models depend on $\lambda_{H}^{2}, \lambda_{E}^{2}$

$$
\begin{aligned}
\text { we use } \lambda_{E}^{2} & =0.03 \pm 0.02 \mathrm{GeV}^{2} \\
\lambda_{H}^{2} & =0.06 \pm 0.03 \mathrm{GeV}^{2}
\end{aligned}
$$

$\Rightarrow \sim 10$ times smaller [Nishikawa/Tanaka 2014]
KMPW10: the 3-pt LCDAs twist
three-particle LCDAs twist expansion
$\rightarrow \quad$ expansion was not known
we use Braun/Ji/Manashov 2017
KMPW10: 4 Lorentz structures
independent 3-particle LCDAs considered
$\rightarrow \quad$ all 8 independent Lorentz structures \Rightarrow partial cancelation (new structures
come with an opposite sign)

Dispersive bounds for \mathcal{H}_{λ}

Dispersive bounds for $\mathcal{H}_{\boldsymbol{\lambda}}$

- estimate truncation error using dispersive bounds
- extend method already used for local form factors to non-local form factors \mathcal{H}_{λ} [BGL 1995] [CLN 1998]
- model independent constraints on $\mathcal{H}_{\lambda} \rightarrow$ control theoretical uncertainties

Parametrizations for $\mathcal{H}_{\boldsymbol{\lambda}}$

- q^{2} parametrization [Ciuchini et al. 2015]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\mathcal{H}_{\lambda}(0)+\frac{q^{2}}{M_{B}^{2}} \mathcal{H}_{\lambda}{ }^{\prime(0)}+\frac{\left(q^{2}\right)^{2}}{M_{B}^{4}} \mathcal{H}_{\lambda}^{\prime \prime}(0)+\cdots
$$

- dispersion relation [KMPW2010]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\mathcal{H}_{\lambda}(0)+\sum_{\psi=J / \psi, \psi(2 S)} \frac{f_{\psi} \mathcal{A}_{\psi}}{M_{\psi}^{2}\left(M_{\psi}^{2}-q^{2}\right)}+\int_{4 M_{D}^{2}}^{\infty} d t \frac{\rho(t)}{t\left(t-q^{2}\right)}
$$

- z expansion [Bobeth/Chrzaszcz/van Dyk/Virto 2017]

$$
\mathcal{H}_{\lambda}(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

- we propose a new parametrization (z polynomials) [NG/van Dyk/Virto '20]

$$
\widehat{\mathcal{H}}_{\lambda}(z)=\sum_{n=0}^{\infty} a_{n} p_{n}(z)
$$

The dispersive bound

expand $\widehat{\mathcal{H}}_{\lambda}$ in orthogonal polynomials $p_{n}(z)$

$$
\widehat{\mathcal{H}}^{B \rightarrow K}(z)=\sum_{n=0}^{\infty} a_{n}^{B \rightarrow K} p_{n}^{B \rightarrow K}(z)
$$

where

$$
\widehat{\mathcal{H}}^{B \rightarrow K}(z)=\mathcal{P}(z) \phi^{B \rightarrow K}(z) \mathcal{H}_{\lambda}^{B \rightarrow K}(z)
$$

$$
p_{0}^{B \rightarrow K}(z)=\frac{1}{\sqrt{2 \alpha_{B K}}}
$$

the dispersive bound reads

$$
1>2 \sum_{n=0}^{\infty}\left|a_{n}^{B \rightarrow K}\right|^{2}+\sum_{\lambda}\left(2 \sum_{n=0}^{\infty}\left|a_{\lambda, n}^{B \rightarrow K^{*}}\right|^{2}+\sum_{n=0}^{\infty}\left|a_{\lambda, n}^{B_{s} \rightarrow \phi}\right|^{2}\right)
$$

$$
p_{1}^{B \rightarrow K}(z)=\left(z-\frac{\sin \left(\alpha_{B K}\right)}{\alpha_{B K}}\right) \sqrt{\frac{\alpha_{B K}}{2 \alpha_{B K}^{2}+\cos \left(2 \alpha_{B K}\right)-1}}
$$

$$
p_{2}^{B \rightarrow K}(z)=\left(z^{2}+\frac{\sin \left(\alpha_{B K}\right)\left(\sin \left(2 \alpha_{B K}\right)-2 \alpha_{B K}\right)}{2 \alpha_{B K}^{2}+\cos \left(2 \alpha_{B K}\right)-1} z+\frac{2 \operatorname{sil}}{2}\right.
$$

$$
p_{3}^{B \rightarrow K}(z)=\cdots
$$

the coefficients of the $\widehat{\mathcal{H}}_{\lambda}$ are bounded!

Conclusions and outlook

Conclusion and outlook

$\boldsymbol{b} \rightarrow \boldsymbol{c}$ transitions:

- $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs - lattice QCD (and LCSRs) calculations available
- use HQET and dispersive bounds for better precision
- non-local effects absent (neglect QED corrections)
- computation $B \rightarrow\left\{D_{1}^{\prime}, D_{1}\right\}$ FFs w.i.p.
$\boldsymbol{b} \rightarrow \boldsymbol{s}$ transitions:
- $B \rightarrow K^{(*)}$ and $B_{s} \rightarrow \phi$ FFs - lattice QCD (and LCSRs) calculations available
- non-local effects implies large uncertainties
- calculate non-local effects
- control these uncertainties (use dispersive bounds)

Thank you!

