Explaining B anomalies with Planck-safe Z'

Tom Steudtner Technische Universität Dortmund University of Sussex

based on 2109.06201 in collaboration with

Gudrun Hiller, Rigo Bause, Tim Höhne, Daniel Litim

Jahrestreffen der deutschen LHCb-Gruppen TU Dortmund 08.10.2021

Various hints of new physics in $b \rightarrow s\mu\mu$ decays

$$R_{K^{(*)}} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to K^{(*)}e^+e^-)}{\mathrm{d}q^2} \mathrm{d}q^2}$$

Obs.	Region of q^2 /	$\mathrm{Pull}_{\mathrm{SM}}$
R_{K^*}	[0.045, 1.1]	2.5σ
	[1.1, 6.0]	2.5σ
R_K	[1.1,6]	3.1σ

[LHCb collaboration: 1705.05802, 2103.11769]

Various hints of new physics in $b \rightarrow s\mu\mu$ decays

$$R_{K^{(*)}} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to K^{(*)}e^+e^-)}{\mathrm{d}q^2} \mathrm{d}q^2}$$

Obs.	Region of q^2 /	$\mathrm{Pull}_{\mathrm{SM}}$
R_{K^*}	0.045, 1.1	2.5σ
	[1.1, 6.0]	2.5σ
R_K	$\begin{bmatrix} 1.1, 6 \end{bmatrix}$	3.1σ

[LHCb collaboration: 1705.05802, 2103.11769]

» described model-independent NP Wilson coefficients

[Bause, Gisbert, Golz, Hiller: 2109.01675]

$$C_9^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \mu)$$

$$C_{10}^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \gamma^5 \mu)$$

Dim.	Fit	C_9^{μ}	C_{10}^{μ}	Pull_{SM}
1d	C_9^{μ}	-0.83 ± 0.14	0	6.0σ
1d	$C_{10}^{\mu} = -C_9^{\mu}$	-0.41 ± 0.07	$-C_9^{\mu}$	6.0σ
2d	$C_{9,10}^{\mu}$	-0.71 ± 0.17	0.20 ± 0.13	5.9σ

Various hints of new physics in $b \rightarrow s\mu\mu$ decays

$$R_{K^{(*)}} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to K^{(*)} e^+ e^-)}{\mathrm{d}q^2} \mathrm{d}q^2}$$

Obs.	Region of q^2 /	$Pull_{SM}$
R_{K^*}	[0.045, 1.1]	2.5σ
	[1.1, 6.0]	2.5σ
R_K	[1.1,6]	3.1σ

[LHCb collaboration: 1705.05802, 2103.11769]

» described model-independent NP Wilson coefficients

$$C_9^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \mu)$$

$$C_{10}^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \gamma^5 \mu)$$

	[Bause, Gisbert, Golz, Hiller: 2109.0167										
Dim.	Fit	C_9^{μ}	C_{10}^{μ}	Pull _{SM}							
1d	C_9^{μ}	-0.83 ± 0.14	0	6.0σ							
1d	$C_{10}^{\mu} = -C_9^{\mu}$	-0.41 ± 0.07	$-C_9^{\mu}$	6.0σ							
2d	$C_{9,10}^{\mu}$	-0.71 ± 0.17	0.20 ± 0.13	5.9σ							

$$C_9^{\prime\mu} \sim (\bar{s}_R \gamma_\nu b_R) (\bar{\mu} \gamma^\nu \mu)$$

$$C_{10}^{\prime\mu} \sim (\bar{s}_R \gamma_\nu b_R) (\bar{\mu} \gamma^\nu \gamma^5 \mu)$$

$$C_9^{\mu} = -1.07 \pm 0.17$$
 $C_9^{\prime \mu} = 0.27 \pm 0.32$

$$C_{10}^{\mu} = 0.18 \pm 0.15$$

$$C_9^{\prime\mu} = 0.27 \pm 0.32$$

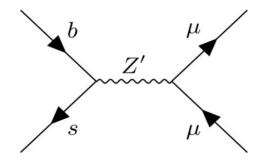
$$C_{10}^{\mu} = 0.18 \pm 0.15$$
 $C_{10}^{\prime \mu} = -0.28 \pm 0.19$

can generate $R_{K^*} \neq R_K$

$$C_9^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \mu)$$
 $C_{10}^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \gamma^5 \mu)$

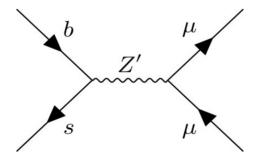
$$C_9^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \mu)$$
 $C_{10}^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \gamma^5 \mu)$

» Model building: Leptoquarks? Z' models? A mix thereof? ...

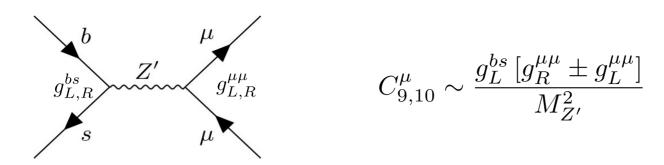

$$C_9^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \mu)$$
 $C_{10}^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \gamma^5 \mu)$

» Model building: Leptoquarks? Z'models? A mix thereof? ...

 \rightarrow light, leptophilic Z'

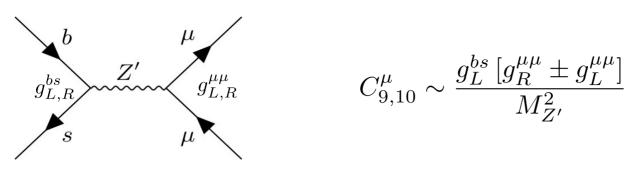

$$C_9^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \mu)$$
 $C_{10}^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \gamma^5 \mu)$

- » Model building: Leptoquarks? Z' models? A mix thereof? ...
 - \rightarrow light, leptophilie Z'
 - \rightarrow heavy Z', tree-level couplings to quarks



$$C_9^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \mu)$$
 $C_{10}^{\mu} \sim (\bar{s}_L \gamma_{\nu} b_L) (\bar{\mu} \gamma^{\nu} \gamma^5 \mu)$

- » Model building: Leptoquarks? Z'models? A mix thereof? ...
 - \rightarrow light, leptophilie Z'
 - \rightarrow heavy Z', tree-level couplings to quarks



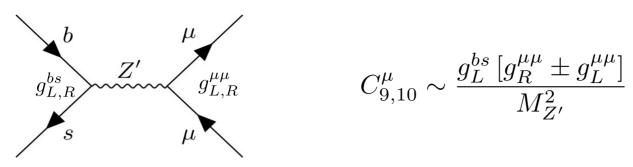
- » consistent QFT: U(1)' extension of SM gauge group
- » fermions have generation-dependent charges

» Direct coupling to quarks: *Z*' is heavy

 $M_{Z'} \gtrsim 5 \; {
m TeV} \; \; {
m first generation quarks} \; [{
m CMS collaboration: 2103.02708}]$

$$C_{9,10}^{\mu} \sim \frac{g_L^{bs} \left[g_R^{\mu\mu} \pm g_L^{\mu\mu} \right]}{M_{Z'}^2}$$

» Direct coupling to quarks: Z' is heavy


 $M_{Z'} \gtrsim 5 \text{ TeV}$ first generation quarks [CMS collaboration: 2103.02708]

» Sizable Z' couplings required to account for $C_{9,10}^{\mu}$

$$g_L^{\mu\mu} = g_4 \, F_{L_2}$$

$$g_R^{\mu\mu} = g_4 \, F_{E_2}$$

$$g_L^{\mu\mu} = g_4 F_{L_2}$$
 $g_R^{\mu\mu} = g_4 F_{E_2}$ $g_L^{bs} = g_4 V_{tb} V_{ts}^* (F_{Q_3} - F_{Q_2})$

$$C_{9,10}^{\mu} \sim \frac{g_L^{bs} \left[g_R^{\mu\mu} \pm g_L^{\mu\mu} \right]}{M_{Z'}^2}$$

» Direct coupling to quarks: Z' is heavy

 $M_{Z'} \gtrsim 5 \text{ TeV}$ first generation quarks [CMS collaboration: 2103.02708]

» Sizable Z' couplings required to account for $C_{9,10}^{\mu}$

$$g_L^{\mu\mu} = g_4 F_{L_2}$$

$$g_R^{\mu\mu} = g_4 \, F_{E_2}$$

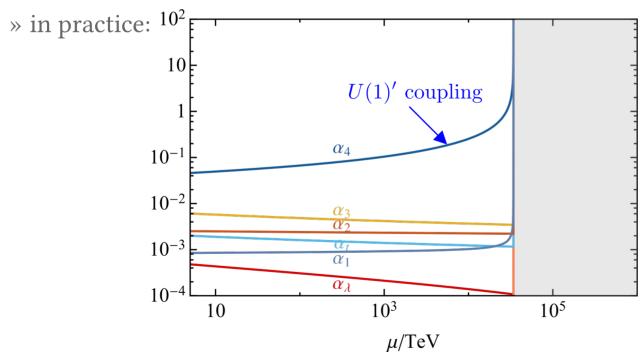
$$g_L^{\mu\mu} = g_4 F_{L_2}$$
 $g_R^{\mu\mu} = g_4 F_{E_2}$ $g_L^{bs} = g_4 V_{tb} V_{ts}^* (F_{Q_3} - F_{Q_2})$

 \rightarrow Landau poles of g_4 before the Planck scale

» e.g. minimal model

$$M_{Z'} \gtrsim 5 \text{ TeV}$$

left muon and b-quark have U(1)' charge + gauge anomaly cancellation

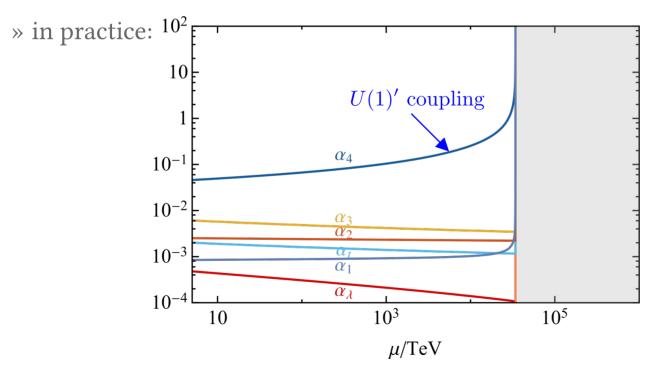

Landau pole $\mu_L \lesssim 10^{10} \, \mathrm{TeV}$

» e.g. minimal model

$$M_{Z'} \gtrsim 5 \text{ TeV}$$

left muon and b-quark have U(1)' charge + gauge anomaly cancellation

Landau pole $\mu_L \lesssim 10^{10} \, \mathrm{TeV}$


Are all these theories excluded?

» e.g. *minimal* model

$$M_{Z'} \gtrsim 5 \text{ TeV}$$

left muon and b-quark have U(1)' charge + gauge anomaly cancellation

Landau pole $\mu_L \lesssim 10^{10} \, \mathrm{TeV}$

Are all these theories excluded?

Landau pole has to be (re)moved!

→ Planck safety

What is Planck Safety?

Between EW and Planck scale:

- » no Landau poles, couplings remain finite
- » parameters remain physical
- » scalar potential is stable

What is Planck Safety?

Between EW and Planck scale:

- » no Landau poles, couplings remain finite
- » parameters remain physical
- » scalar potential is stable
- \rightarrow consistent, predictive until $M_{\rm Pl}$
- "Asymptotic Safety until the Planck scale"
- → provides additional theory constraints

» SM is **not** Planck-safe – Higgs metastability!

→ remove Landau poles and restore Higgs stability

- » SM is **not** Planck-safe Higgs metastability!
 - → remove Landau poles and restore Higgs stability
- » template BSM sector inspired by Asymptotic Safety [Litim, Sannino, JHEP 2014]

```
\psi_i   N_f vector-like fermions (charged) – "quark"
```

 S_{ij} $N_f \times N_f$ matrix-like scalars (uncharged) – "meson"

- » SM is **not** Planck-safe Higgs metastability!
 - → remove Landau poles and restore Higgs stability
- » template BSM sector inspired by Asymptotic Safety [Litim, Sannino, JHEP 2014]

$$\psi_i$$
 N_f vector-like fermions (charged) – "quark"

$$S_{ij}$$
 $N_f \times N_f$ matrix-like scalars (uncharged) – "meson"

$$-\mathcal{L}_y = y \left(\overline{\psi}_{Li} \, S_{ij} \, \psi_{Rj} + \text{h.c.} \right)$$
 unbroken flavor symmetry

- » SM is **not** Planck-safe Higgs metastability!
 - → remove Landau poles and restore Higgs stability
- » template BSM sector inspired by Asymptotic Safety [Litim, Sannino, JHEP 2014]

$$\psi_i$$
 N_f vector-like fermions (charged) – "quark"

$$S_{ij}$$
 $N_f \times N_f$ matrix-like scalars (uncharged) – "meson"

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right)$$
unbroken flavor symmetry
$$\frac{d\alpha_{4}}{d \ln \mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$

- » SM is **not** Planck-safe Higgs metastability!
 - → remove Landau poles and restore Higgs stability
- » template BSM sector inspired by Asymptotic Safety [Litim, Sannino, JHEP 2014]

$$\psi_i$$
 N_f vector-like fermions (charged) – "quark"

$$S_{ij}$$
 $N_f \times N_f$ matrix-like scalars (uncharged) – "meson"

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right)$$
unbroken flavor symmetry
$$\frac{d\alpha_{4}}{d \ln \mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$

- N_f , $N_c \to \infty$ exact UV fixed point (asymptotic safety)
- $N_f = 3$, embed in gauge group \rightarrow potentially enables Planck safety

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right) \qquad \frac{d\alpha_{4}}{d \ln \mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$

» tame Landau poles by Yukawa interaction

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right) \qquad \frac{d\alpha_{4}}{d \ln \mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$

» stabilize Higgs potential by scalar portals, sometimes additional Yukawas

$$\sim \delta \operatorname{Tr} \left[S^{\dagger} S \right] (H^{\dagger} H)$$

» tame Landau poles by Yukawa interaction

$$-\mathcal{L}_{y} = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right) \qquad \frac{d\alpha_{4}}{d \ln \mu} = + \# \alpha_{4}^{2} + \# \alpha_{4}^{3} - \# y^{2} N_{f}^{2} \alpha_{4}^{2}$$

» stabilize Higgs potential by scalar portals, sometimes additional Yukawas

$$\sim \delta \operatorname{Tr} \left[S^{\dagger} S \right] (H^{\dagger} H)$$

- » enhances physics predictivity:
 - → previous work with BSM vector-like leptons [Hiller, Hormigos-Feliu, Litim, TS: Phys.Rev.D 102 (2020) 9]
 - ightarrow simultaneous explanation for $(g-2)_{\mu,e}$ [Hiller, Hormigos-Feliu, Litim, TS: Phys.Rev.D 102 (2020) 7]

- » extended gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'$
- » SM matter fields Q_i, U_i, D_i, L_i, E_i and Higgs H

- » extended gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'$
- » SM matter fields Q_i, U_i, D_i, L_i, E_i and Higgs H
- » for models with $C_{10}^{\mu} \neq 0$: right-handed neutrinos ν_i

- » extended gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'$
- » SM matter fields Q_i, U_i, D_i, L_i, E_i and Higgs H
- » for models with $C_{10}^{\mu} \neq 0$: right-handed neutrinos ν_i
- » U(1)' breaking, charged scalar ϕ

- » extended gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'$
- » SM matter fields Q_i, U_i, D_i, L_i, E_i and Higgs H
- » for models with $C_{10}^{\mu} \neq 0$: right-handed neutrinos ν_i
- » U(1)' breaking, charged scalar ϕ
- » Planck-Safety sector:
 - ullet vector-like BSM fermion ψ_i
 - uncharged 3 x 3 BSM scalar S_{ij}
- » scalar portals between H, ϕ, S_{ij}

- » choice:
 - BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)

- » choice:
 - BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
 - Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB

- » choice:
 - BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
 - Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB
- » 6 gauge anomaly cancellation conditions for U(1)'

- » choice:
 - BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
 - Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB
- » 6 gauge anomaly cancellation conditions for U(1)'
- » condition for each component of SM Yukawa matrices
 - diagonal quark Yukawas Y_{ii}^u , Y_{ii}^d compatible with U(1)'
 - lepton and off-diagonal CKM elements are small breaking
 - ightarrow some models allow diagonal lepton and RHN Yukawas $\ Y^e_{ii}, \ Y^{
 u}_{ii}$

- » choice:
 - BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
 - Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB
- » 6 gauge anomaly cancellation conditions for U(1)'
- » condition for each component of SM Yukawa matrices
 - diagonal quark Yukawas Y_{ii}^u , Y_{ii}^d compatible with U(1)'
 - lepton and off-diagonal CKM elements are small breaking
 - \rightarrow some models allow diagonal lepton and RHN Yukawas Y_{ii}^e, Y_{ii}^{ν}
- » choose CKM rotation in down-sector only
 - → no FCNCs for up-type quarks

- » choice:
 - BSM fermion ψ_i is SM singlet, but U(1)' charged (invisible!)
 - Higgs is uncharged under $U(1)' \rightarrow$ no interference with EWSB
- » 6 gauge anomaly cancellation conditions for U(1)'
- » condition for each component of SM Yukawa matrices
 - diagonal quark Yukawas Y_{ii}^u , Y_{ii}^d compatible with U(1)'
 - lepton and off-diagonal CKM elements are small breaking
 - \rightarrow some models allow diagonal lepton and RHN Yukawas Y_{ii}^e, Y_{ii}^{ν}
- » choose CKM rotation in down-sector only
 - → no FCNCs for up-type quarks
- » small gauge-kinetic at the electroweak scale mixing between $U(1)_Y \times U(1)'$

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0 -	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
$ BM_2 $	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
$ BM_3 $	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

[»] pass 6 gauge anomaly cancellation conditions

[»] allow at least diagonal quark Yukawas

U(1)' charges and benchmark models

Model		F_{Q_i}			F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
BM_2	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
BM_3	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

[»] pass 6 gauge anomaly cancellation conditions

[»] allow at least diagonal quark Yukawas

[»] no Z' – electron couplings

U(1)' charges and benchmark models

Model	F	Q_i		F_{U_i}			F_{D_i}			F_{L_i}			F_{E_i}			F_{ν_i}		F_H	F_{ψ}	F_{ϕ}
BM_1	$\frac{1}{20}$	$\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	$-\frac{9}{10}$	$\frac{9}{10}$	0	0	0	0	1	$\frac{1}{5}$
$ BM_2 $	$-\frac{1}{4}$ -	$-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{6}$	0	1	0	0	0	1	$\frac{1}{12}$	$-\frac{1}{12}$	1	0	$\frac{11}{12}$	$\frac{1}{9}$
$ BM_3 $	$-\frac{1}{8}$ -	$-\frac{1}{8}$ 0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	$-\frac{1}{8}$	$-\frac{1}{8}$	0	0	$\frac{1}{2}$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{8}$
BM_4	0	$0 \frac{1}{9}$	0	0	$\frac{1}{9}$	0	0	$\frac{1}{9}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	1	$\frac{1}{6}$

[»] pass 6 gauge anomaly cancellation conditions

[»] allow at least diagonal quark Yukawas

[»] no Z' – electron couplings

[»] no Kaon mixing

U(1)' charges and benchmark models

Model	F_{Q_i}	F_{U_i}	F_{D_i}	F_{L_i}	F_{E_i}	$F_{ u_i}$	$F_H \mid F_{\psi} \mid F_{\phi}$
BM_1	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$0 - \frac{9}{10} \frac{9}{10}$	$0 - \frac{9}{10} \frac{9}{10}$	0 0 0	$0 \ 1 \ \frac{1}{5}$
$ BM_2 $	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	0 1 0	0 0 1	$\frac{1}{12} - \frac{1}{12}$ 1	$0 \frac{11}{12} \frac{1}{9}$
BM_3	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$0 \frac{1}{2} \frac{1}{4}$	$0 \frac{1}{4} \frac{1}{2}$	$0 \qquad \frac{1}{4} \qquad \frac{1}{2}$	$0 1 \frac{1}{8}$
BM_4	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 1 \frac{1}{6}$

- » pass 6 gauge anomaly cancellation conditions
- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound

U(1)' charges and benchmark models

Model	F_{Q_i}	F_{U_i}	F_{D_i}	F_{L_i}	F_{E_i}	$F_{ u_i}$	$oxed{F_H F_\psi F_\phi}$
BM_1	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$0 - \frac{9}{10} \frac{9}{10}$	$0 - \frac{9}{10} \frac{9}{10}$	0 0 0	$0 \ 1 \ \frac{1}{5}$
BM_2	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	0 1 0	0 0 1	$\frac{1}{12} - \frac{1}{12}$ 1	$0 \frac{11}{12} \frac{1}{9}$
BM_3	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$0 \frac{1}{2} \frac{1}{4}$	$0 \frac{1}{4} \frac{1}{2}$	$0 \qquad \frac{1}{4} \qquad \frac{1}{2}$	$0 \ \ 1 \ \ \frac{1}{8}$
BM_4	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	0 0 $\frac{1}{9}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \ 1 \ \frac{1}{6}$

- » pass 6 gauge anomaly cancellation conditions
- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole

U(1)' charges and benchmark models

Model	F_{Q_i}	F_{U_i}	F_{D_i}	F_{L_i}	F_{E_i}	$F_{ u_i}$	$F_H \mid F_{\psi} \mid F_{\phi}$
BM_1	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$0 - \frac{9}{10} \frac{9}{10}$	$0 - \frac{9}{10} \frac{9}{10}$	0 0 0	$0 \ 1 \ \frac{1}{5}$
BM_2	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	0 1 0	0 0 1	$\frac{1}{12} - \frac{1}{12}$ 1	$0 \frac{11}{12} \frac{1}{9}$
$ BM_3 $	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$0 \frac{1}{2} \frac{1}{4}$	$0 \frac{1}{4} \frac{1}{2}$	$0 \qquad \frac{1}{4} \qquad \frac{1}{2}$	$0 \ 1 \ \frac{1}{8}$
$\mathrm{BM_4}$	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \ 1 \ \frac{1}{6}$

- » pass 6 gauge anomaly cancellation conditions
- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole
- » *U*(1)' breaking, no additional Yukawas

U(1)' charges and benchmark models

Model	F_{Q_i}	F_{U_i}	F_{D_i}	F_{L_i}	F_{E_i}	$F_{ u_i}$	F_H F_{ψ} F_{ϕ}
BM_1	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$0 - \frac{9}{10} \frac{9}{10}$	$0 - \frac{9}{10} \frac{9}{10}$	0 0 0	$0 \ 1 \ \frac{1}{5}$
BM_2	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	0 1 0	0 0 1	$\frac{1}{12} - \frac{1}{12}$ 1	$0 \frac{11}{12} \frac{1}{9}$
$ BM_3 $	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$0 \frac{1}{2} \frac{1}{4}$	$0 \frac{1}{4} \frac{1}{2}$	$0 \qquad \frac{1}{4} \qquad \frac{1}{2}$	$0 \ \ 1 \ \ \frac{1}{8}$
$\mathrm{BM_4}$	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \ 1 \ \frac{1}{6}$

- » pass 6 gauge anomaly cancellation conditions
- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole
- » *U*(1)' breaking, no additional Yukawas
- » EWSB without *U*(1)' sector

U(1)' charges and benchmark models

Model	F_{Q_i}	F_{U_i}	F_{D_i}	F_{L_i}	F_{E_i}	$F_{ u_i}$	$oxed{F_H} oxed{F_\psi} oxed{F_\phi}$
BM_1	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$0 + \frac{9}{10} + \frac{9}{10}$	$0 - \frac{9}{10}$ $\frac{9}{10}$	0 0 0	$0 \ 1 \ \frac{1}{5}$
$ BM_2 $	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	0 1 0	0 0 1	$\frac{1}{12} - \frac{1}{12}$ 1	$0 \begin{vmatrix} \frac{11}{12} & \frac{1}{9} \end{vmatrix}$
$ BM_3 $	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$0 \frac{1}{2} \frac{1}{4}$	$0 \frac{1}{4} \frac{1}{2}$	$0 \qquad \frac{1}{4} \qquad \frac{1}{2}$	$0 \ \ 1 \ \ \frac{1}{8}$
BM_4	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \ 1 \ \frac{1}{6}$

- » pass 6 gauge anomaly cancellation conditions
- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole
- » *U*(1)' breaking, no additional Yukawas
- » EWSB without U(1)' sector

$$C_9^{\mu} \neq 0, C_{10}^{\mu} = 0 \longrightarrow BM_1$$

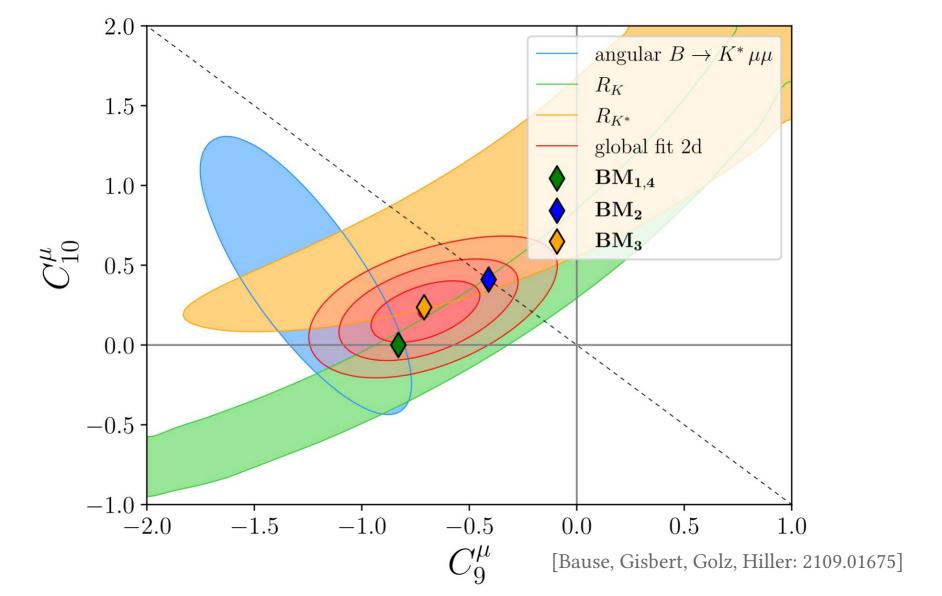
$$BM_4$$

$$C_9^{\mu} = -C_{10}^{\mu} \longrightarrow BM_2$$

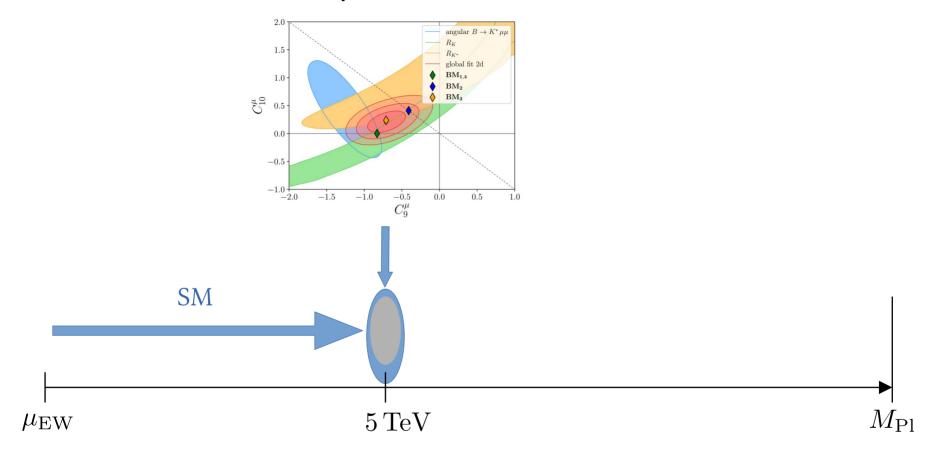
$$C_{9,10}^{\mu} \neq 0 \longrightarrow BM_3$$

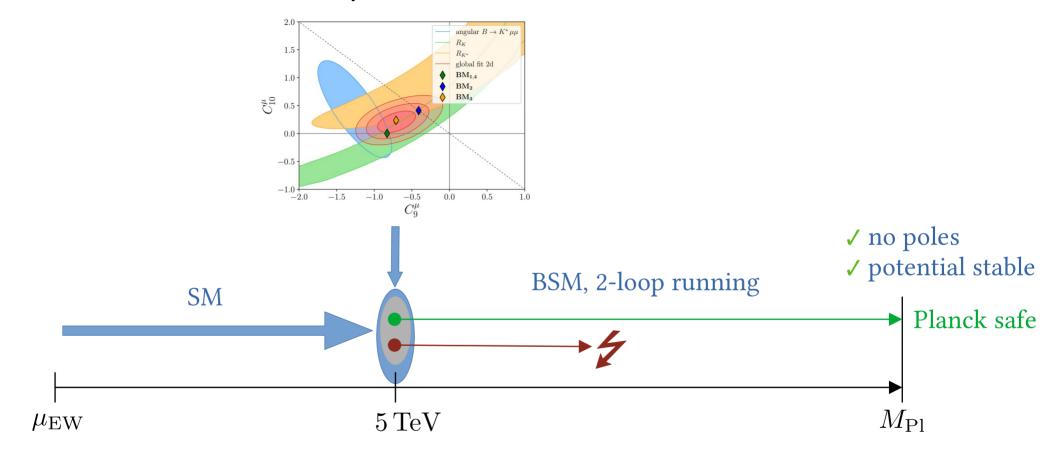
U(1)' charges and benchmark models

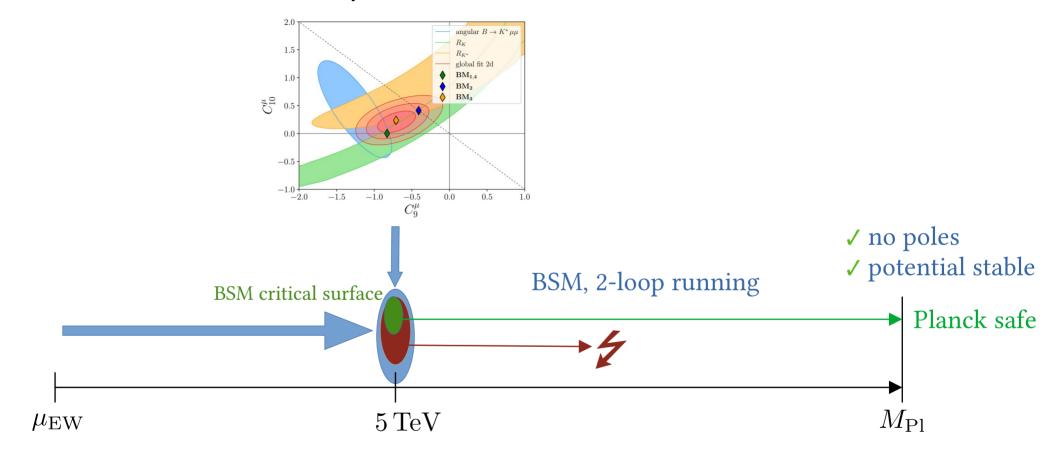
Model	F_{Q_i}	F_{U_i}	F_{D_i}	F_{L_i}	F_{E_i}	$F_{ u_i}$	F_H F_{ψ} F_{ϕ}
BM_1	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$\frac{1}{20}$ $\frac{1}{20}$ $-\frac{1}{10}$	$0 + \frac{9}{10} + \frac{9}{10}$	$0 - \frac{9}{10}$ $\frac{9}{10}$	0 0 0	$0 \ 1 \ \frac{1}{5}$
$ BM_2 $	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	$-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{6}$	0 1 0	0 0 1	$\frac{1}{12} - \frac{1}{12}$ 1	$0 \frac{11}{12} \frac{1}{9}$
BM_3	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$-\frac{1}{8}$ $-\frac{1}{8}$ 0	$0 \frac{1}{2} \frac{1}{4}$	$0 \frac{1}{4} \frac{1}{2}$	$0 \qquad \frac{1}{4} \qquad \frac{1}{2}$	$0 \ \ 1 \ \ \frac{1}{8}$
BM_4	0 0 $\frac{1}{9}$	$0 0 \frac{1}{9}$	$0 0 \frac{1}{9}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \frac{1}{3} -\frac{2}{3}$	$0 \ 1 \ \frac{1}{6}$

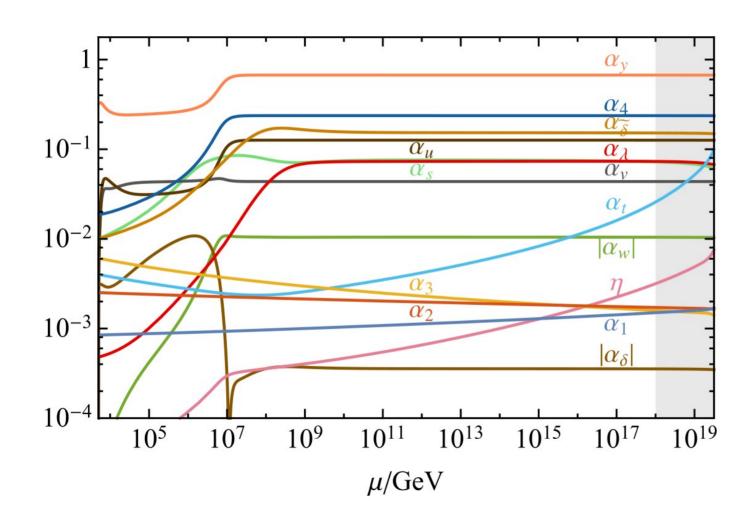

- » pass 6 gauge anomaly cancellation conditions
- » allow at least diagonal quark Yukawas
- » no Z' electron couplings
- » no Kaon mixing
- » B_s mixing bound
- » tame Landau pole
- » *U*(1)' breaking, no additional Yukawas
- » EWSB without *U*(1)' sector

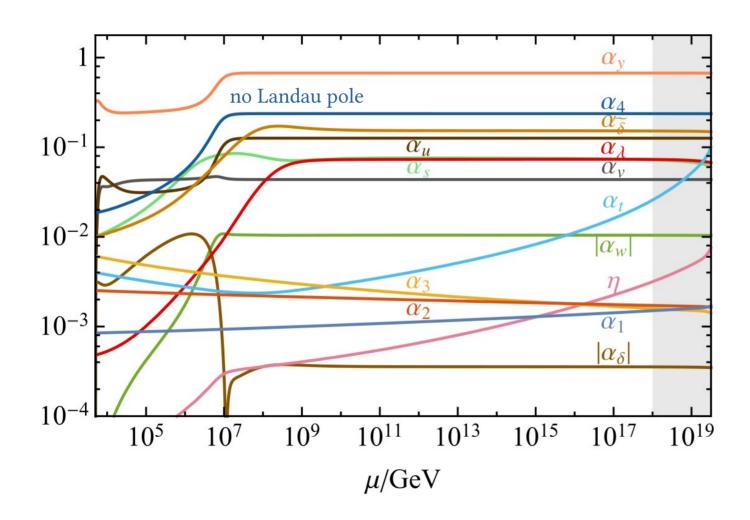

$$C_9^{\mu} \neq 0, C_{10}^{\mu} = 0 \longrightarrow \mathbf{BM_1}$$
 no right-handed neutrinos $\mathbf{BM_4}$ lighter Z'

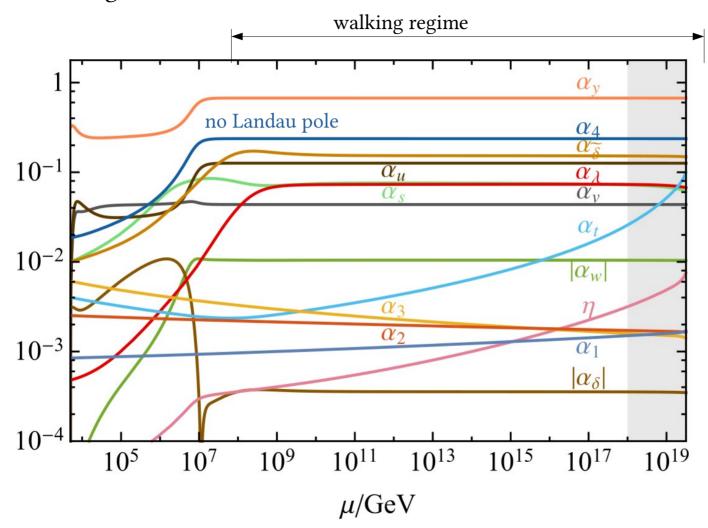

$$C_9^{\mu} = -C_{10}^{\mu} \longrightarrow \mathbf{BM_2}$$

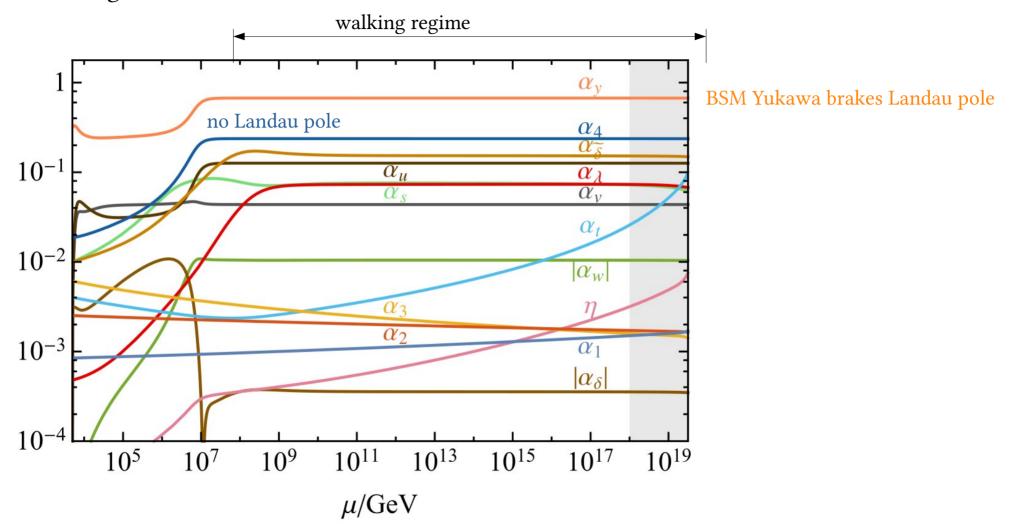

$$C_{9,10}^{\mu} \neq 0 \longrightarrow \mathbf{BM_3}$$

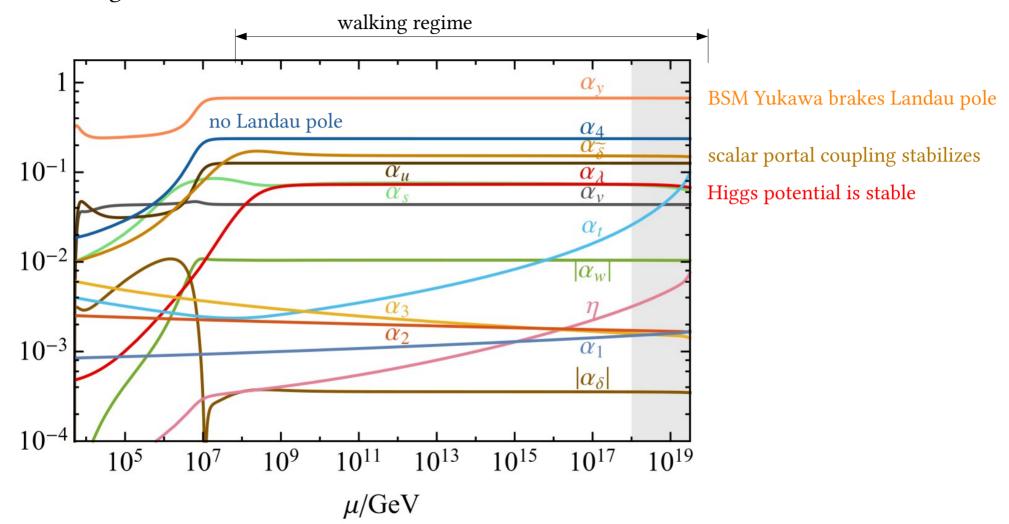

$$C_{9,10}^{\mu} \neq 0 \longrightarrow \mathbf{BM}$$

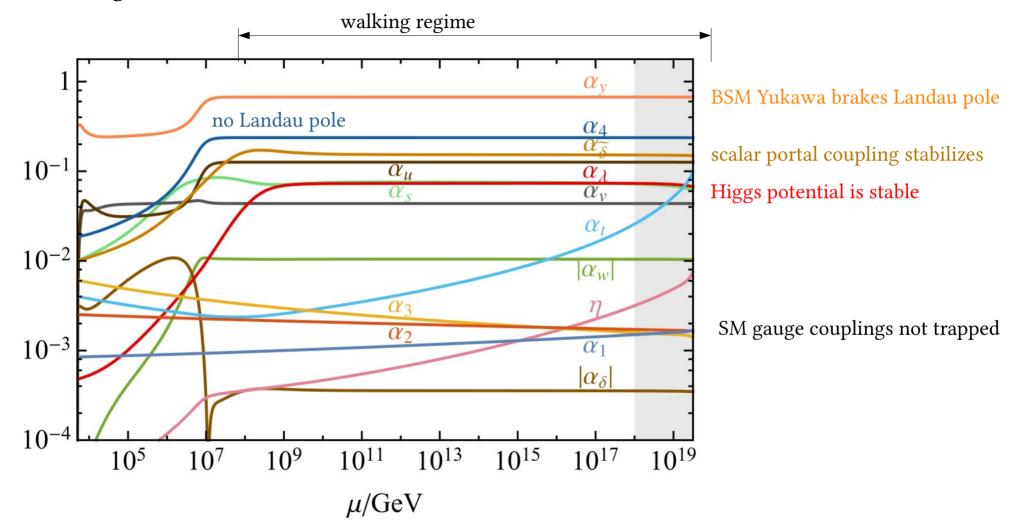


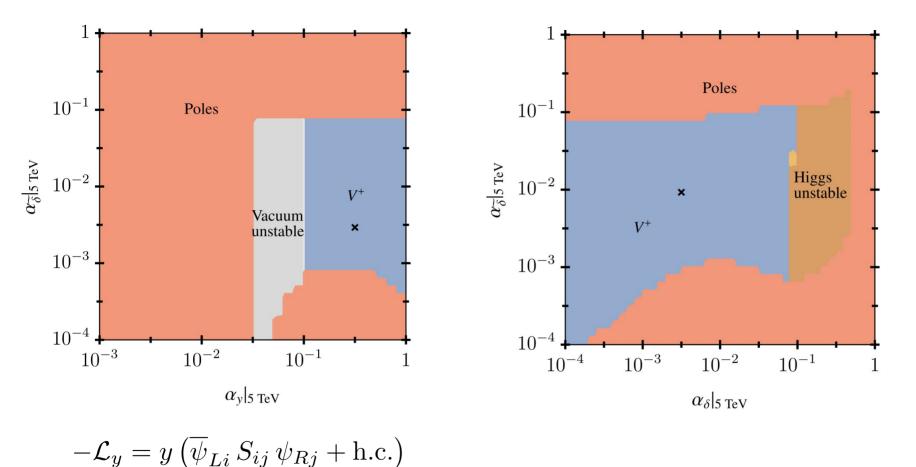


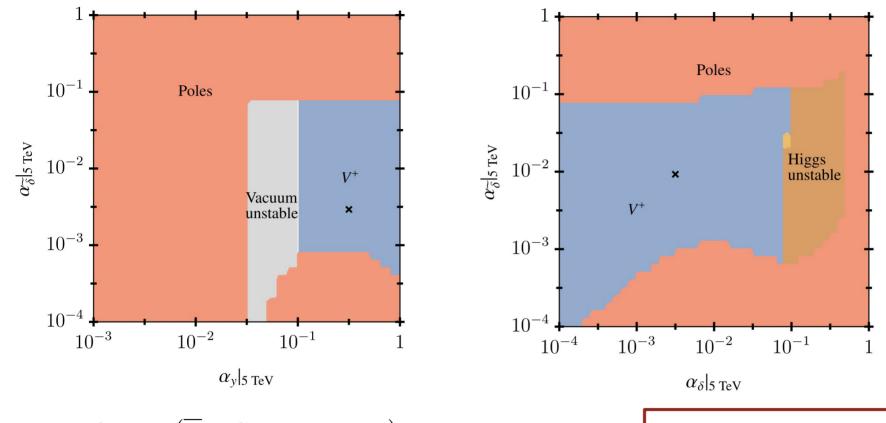









RG running



BSM critical surface

$$-\mathcal{L}_{\text{portal}} = \delta \operatorname{Tr} \left[S^{\dagger} S \right] (H^{\dagger} H) + \tilde{\delta} \left(\phi^{\dagger} \phi \right) (H^{\dagger} H)$$

BSM critical surface

 $-\mathcal{L}_y = y \left(\overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} \right)$

$$-\mathcal{L}_{\text{portal}} = \delta \operatorname{Tr} \left[S^{\dagger} S \right] (H^{\dagger} H) + \tilde{\delta} (\phi^{\dagger} \phi) (H^{\dagger} H)$$

 $\alpha_y(\mu_0) \gtrsim 10^{-1.25} \dots 10^{-1}$ bounds on α_δ , $\alpha_{\tilde{\delta}}$ vary among BMs

» broad decay of Z' to invisibles $Z' \to \bar{\psi}\psi, \bar{\nu}\nu$ with 65 .. 85% BR

Model	jets	b	t	e	μ	au	$ u_{e,\mu, au} $	h	$\psi_{1,2,3}$	ϕ
$\mathrm{BM_1}$	0.5	0.5	0.5	0	15	15	15	0	54	0.2
$\mathrm{BM_2}$	14	1.5	1.5	0	9	9	18	0	46	0.1
BM_3	5	0	0	0	4	4	8	0	79	0.1
$\mathrm{BM_4}$	0	0.9	0.9	0	3	11	14	0	72	0.2

» broad decay of Z' to invisibles $Z' \to \bar{\psi}\psi, \bar{\nu}\nu$ with 65 .. 85% BR

Model	jets	b	t	e	μ	au	$ u_{e,\mu, au} $	h	$\psi_{1,2,3}$	ϕ
BM_1	0.5	0.5	0.5	0	15	15	15	0	54	0.2
BM_2	14	1.5	1.5	0	9	9	18	0	46	0.1
BM_3	5	0	0	0	4	4	8	0	79	0.1
BM_4	0	0.9	0.9	0	3	11	14	0	72	0.2

» can be probed & models distinguished at μμ collider:

$$\sigma(\mu^+\mu^- \to Z' \to \bar{\psi}\psi, \bar{\nu}\nu) \approx (10^2..10^3) \, \sigma(\mu^+\mu^- \to Z \to \bar{\nu}\nu)^{\rm SM}$$

» broad decay of Z' to invisibles $Z' \to \bar{\psi}\psi, \, \bar{\nu}\nu$ with 65 .. 85% BR

Model	jets	b	t	e	μ	au	$ u_{e,\mu, au} $	h	$\psi_{1,2,3}$	ϕ
BM_1	0.5	0.5	0.5	0	15	15	15	0	54	0.2
BM_2	14	1.5	1.5	0	9	9	18	0	46	0.1
BM_3	5	0	0	0	4	4	8	0	79	0.1
BM_4	0	0.9	0.9	0	3	11	14	0	72	0.2

» can be probed & models distinguished at μμ collider:

$$\sigma(\mu^{+}\mu^{-} \to Z' \to \bar{\psi}\psi, \bar{\nu}\nu) \approx (10^{2}..10^{3}) \, \sigma(\mu^{+}\mu^{-} \to Z \to \bar{\nu}\nu)^{\text{SM}}$$

» only mildly enhanced $B \to K^{(*)} \bar{\nu} \nu$, consistent with SM expectation

» broad decay of Z' to invisibles $Z' \to \bar{\psi}\psi, \bar{\nu}\nu$ with 65 .. 85% BR

Model	jets	b	t	e	μ	au	$ u_{e,\mu, au} $	h	$\psi_{1,2,3}$	ϕ
BM_1	0.5	0.5	0.5	0	15	15	15	0	54	0.2
BM_2	14	1.5	1.5	0	9	9	18	0	46	0.1
BM_3	5	0	0	0	4	4	8	0	79	0.1
BM_4	0	0.9	0.9	0	3	11	14	0	72	0.2

» can be probed & models distinguished at μμ collider:

$$\sigma(\mu^{+}\mu^{-} \to Z' \to \bar{\psi}\psi, \bar{\nu}\nu) \approx (10^{2}..10^{3}) \, \sigma(\mu^{+}\mu^{-} \to Z \to \bar{\nu}\nu)^{\text{SM}}$$

- » only mildly enhanced $B \to K^{(*)} \bar{\nu} \nu$, consistent with SM expectation
- » benchmarks are consistent with LHC search [CMS collaboration: 2103.02708]

Summary

Model	μ_0	$\alpha_4(\mu_0)$	C_9^{μ}	C_{10}^{μ}	$Y_{ii}^{u,d}$	Y_{ii}^e	$Y_{ii}^{ u}$	r_{B_s}	$\mathcal{B}(Z' o ext{inv.})$	$ u_R$
BM_1	5 TeV	$1.87 \cdot 10^{-2}$	-0.83	0	√	√	Χ	0.35	73%	Χ
BM_2	5 TeV	$5.97 \cdot 10^{-3}$	-0.41	$-C_9^{\mu}$	\checkmark	X	X	0.86	64%	\checkmark
$ m BM_3$	5 TeV	$4.60 \cdot 10^{-2}$	-0.71	+0.24	\checkmark	X	X	0.60	87%	\checkmark
BM_4	3 TeV	$2.46 \cdot 10^{-2}$	-0.83	0	✓	\checkmark	✓	0.70	86%	\checkmark

Summary

Model	μ_0	$\alpha_4(\mu_0)$	C_9^{μ}	C^{μ}_{10}	$Y_{ii}^{u,d}$	Y_{ii}^e	$Y_{ii}^{ u}$	r_{B_s}	$\mathcal{B}(Z' o ext{inv.})$	$ u_R$
BM_1	5 TeV	$1.87 \cdot 10^{-2}$	-0.83	0	√	√	Χ	0.35	73%	Χ
$ \mathbf{BM_2} $	5 TeV	$5.97 \cdot 10^{-3}$	-0.41	$-C_9^{\mu}$	\checkmark	Χ	X	0.86	64%	\checkmark
$ m BM_3$	5 TeV	$4.60 \cdot 10^{-2}$	-0.71	+0.24	\checkmark	Χ	X	0.60	87%	\checkmark
BM_4	3 TeV	$2.46 \cdot 10^{-2}$	-0.83	0	\checkmark	✓	√	0.70	86%	\checkmark

heavy Z' models that

- » explain B-anomalies in several interesting NP scenarios
- » compliant with anomaly cancellation, quark Yukawas, precision measurements
- » are predictive until $M_{Pl} \rightarrow$ no Landau poles
- » stabilize the Higgs potential
- » can be probed at colliders
- » decay mostly to invisibles