

Sonificazione della Relazione di Indeterminazione

In this hands-on session, we generate some synthetic sounds and perform some time-frequency analysis. We will *hear* the Uncertainty Relation at work.

```
In [1]:
# standard python libs for math, signal processing and plotting
import numpy as np
import scipy.signal as ss
import matplotlib.pyplot as plt
from math import log10
# python libs for the notebook interaction
from ipywidgets import interact
import ipywidgets as widgets
# custom modules
import scipy.io.wavfile as wav
import simpleaudio as sa  # generates sounds
from tftb.processing import Spectrogram # computes a time-frequency "map" of a s
# with the following, the plots are opened as separate windows in full resolution
#%matplotlib
fs = 44100
                # sampling frequency in audio cards is 44.1 kHz for CD-quality a
samples = 65536  # samples used for the FFT
```

The Fourier Transform

Theory recap

The Fourier Transform S(f) of a time-dependent signal s(t) is defined as:

$$S(f) := \int_{-\infty}^{+\infty} s(t)e^{-i2\pi ft}dt$$

The Discrete Fourier Transform S(m) of a finite sequence s(n) is defined as:

$$S(k) = \sum_{n=0}^{N-1} s(n)e^{-i2\pi kn/N}$$
 $k = 0, 1, \dots, N-1$

Where N is the length of the s(n) sequence, as well as the length of the S(m) sequence of frequency samples.

Testing live

Let's explore the properties of some simple audio signals live. The quantizeandplay() function is a simple quantizer to play the signal with either 8-bit or 16-bit levels. Note that the quantization process introduces an error equal to half the least significant bit, therefore the Signal-to-Noise ratio (SNR) is:

$$SNR_{dB} = 2 \cdot 10 \ log_{10}(2^n) \approx 6n \ [dB]$$

Where n is the number of bits. Therefore with 8 bit (typical for radio-quality or mobile-phone-quality

audio), the SNR is 48 dB. With 16 bit (the standard for CD-quality audio), the SNR is 96 dB.

```
In [4]:
def plottimefreq(s, duration, small=False):
    # plot the time series of the signal s
    plt.subplots(figsize=(25, 5))
    ax = plt.subplot(1, 3 - int(small), 1)
    plt.plot(np.real(s))
    plt.xlim(0)
    ax.set xlabel('t [ms]')
    maxx = int(duration*10 + 1)*100
    ax.set xticks(np.arange(0, maxx*fs/1000, maxx*fs/10000, dtype=int))
    ax.set xticklabels(np.arange(0, maxx, maxx/10, dtype=int))
    plt.grid(which='major')
    plt.title("Wave packet")
    # also compute and plot power spectral density
    ax = plt.subplot(1, 3 - int(small), 2)
    s = np.pad(s, (0, samples-s.size), mode='constant')
    W = np.abs(np.fft.fft(s) ** 2)
    f = np.fft.fftfreq(s.size, 1/fs)
    plt.plot(f, W)
    plt.xlim(20, 10000)
    #formatter = LogFormatter(labelOnlyBase=False, minor thresholds=(1, 0.1))
    #ax.get xaxis().set minor formatter(formatter)
    ax.set_xlabel('f [Hz]')
    plt.ylim(1E-4)
    plt.xscale('log')
    plt.yscale('log')
    plt.grid(which='both')
    plt.title("Power spectral density (log/log)")
    plt.show()
def quantizeandplay(s, quant):
    if quant not in [4, 8, 16]:
        raise Exception('Unsupported quantization')
    qfactor = (2**(quant-1) - 1) * 1.0 / np.max(np.abs(s))
    playable = s * qfactor
    playable = playable.astype(np.int16 if quant == 16 else np.int8)
    # stop any ongoing play
    sa.stop all()
    # play on a single audio channel with either 1 or 2 bytes per sample according
    sa.play buffer(playable, 1, 2 if quant == 16 else 1, fs)
    # rescale the quantized signal
    return playable.astype(float) / qfactor
```

The interactive code below creates simple audio signals, plays them and shows the plots from the above function

The Uncertainty Relation in action

In the following, we plot a "single-frequency" wavelet and its power spectral density, and compare their time vs. frequency spreads:

- by varying the duration of the wavelet
- by varying the enveloping or windowing signal (rectangular i.e. no window, Hann, Hamming, or Gaussian)
- by varying the fraction of the signal that is smoothed by the window

We can "see" how a short time spread yields a large frequency spread, and we can "hear" how the sound progressively becomes a *tic* with no clear pitch! Also, note how the absence of a windowing signal produces a *click* at the beginning and at the end of the signal, whereas the smoothest sound comes with the Gaussian windowing.

```
In [8]:
@interact(f=widgets.FloatLogSlider(min=log10(20), max=log10(20000), value=100, con
          duration=widgets.FloatSlider(min=0.01, max=0.5, value=0.2, step=0.01, co
          window=widgets.RadioButtons(options=['rect', 'hann', 'hamming', 'gaussia
          gauss stdev=widgets.IntSlider(min=100, max=8000, value=5000, continuous
          win frac=widgets.FloatSlider(min=0.01, max=1.00, value=1.00, step=0.01,
           #quantization=widgets.RadioButtons(options=[16, 8, 4, None]),
def playwavelet(f, duration, window, gauss stdev, win frac):
    t = np.linspace(0, duration, int(duration * fs), False)
    quantization = 16
    # generate the fundamental wave
    s = np.sin(2 * np.pi * f * t)
    # use a window to smooth begin and end
    if window == 'hann':
        w = np.hanning(s.size * win frac)
    elif window == 'hamming':
        w = np.hamming(s.size * win frac)
    elif window == 'gaussian':
        w = ss.gaussian(int(s.size * win frac), duration*win frac*gauss stdev)
    if window != 'rect':
        # apply the window at the ramp up and ramp down of the signal
        for i in range(int(w.size/2)):
            s[i] *= w[i]
            s[s.size-int(w.size/2)+i] *= w[int(w.size/2)+i]
    # play it if required, and plot it
    if not quantization:
       p = s
    else:
        p = quantizeandplay(s, quantization)
    plottimefreq(p, duration)
```

Time-Frequency Analysis

The energy distribution of a transient signal can be obtained for instance with the *spectrogram*, defined from the *Short-Time Fourier Transform*:

$$S_{st}(t,f) = \int_{-\infty}^{+\infty} s(au) w(au - t) e^{-i2\pi f au} d au$$

Where w(t) is a windowing function, typically Hamming or Gaussian. The spectrogram is defined as $|S_{st}(t,f)|^2$.

The Uncertainty Relation can be seen at play in the time-frequency plane as the "area" occupied by a signal cannot be arbitrarily small: a signal can either be localized over the t axis or over the f axis, not both. Again, the maximum localization in both axis, i.e. the minimal area, is achieved with a Gaussian signal.

```
In [7]:
@interact(f=widgets.FloatLogSlider(min=log10(100), max=log10(1000), value=300, con
          duration_ms=widgets.IntSlider(min=1, max=500, value=100, step=1, continu
          window=widgets.RadioButtons(options=['rect', 'hann', 'hamming', 'gaussia
          win frac=widgets.FloatSlider(min=0.01, max=1.00, value=1.00, step=0.01,
def playwavelet(f, duration ms, window, win frac):
    t = np.linspace(0, duration ms/1000, int(duration ms/1000 * fs), False)
    # generate the fundamental wave
    s = 1000 * np.sin(2 * np.pi * f * t)
    # use a window to smooth begin and end
    if window == 'hann':
        w = np.hanning(s.size * win frac)
    elif window == 'hamming':
        w = np.hamming(s.size * win frac)
    elif window == 'gaussian':
        w = ss.gaussian(int(s.size * win frac), duration ms*win frac*4)
    if window != 'rect':
        # apply the window at the ramp up and ramp down of the signal
        for i in range(int(w.size/2)):
            s[i] *= w[i]
            s[s.size-int(w.size/2)+i] *= w[int(w.size/2)+i]
    # pad the signal, resample to speed up computation, and compute the spectrogra
    # the window function is 200 times shorter than the input signal to accurately
    padding = int((samples/2-s.size)/2)
    sp = Spectrogram(ss.resample(np.pad(s, (padding, padding), mode='constant'), 2
                     fwindow=np.hamming(int(s.size/100)+1)) # ss.gaussian(int(s.
    sp.run()
    sp.plot(kind='contour', scale='log', threshold=0.01)
    # add the usual time domain and frequency domain plots for reference
    plottimefreq(s, duration ms/1000, small=True)
```