Sonificazione della Relazione di Indeterminazione @

In this hands-on session, we generate some synthetic sounds and perform some time-frequency
analysis. We will hear the Uncertainty Relation at work.

standard python 1libs for math, signal processing and plotting
import numpy as np

import scipy.signal as ss

import matplotlib.pyplot as plt

from math import loglO

python 1ibs for the notebook interaction
from ipywidgets import interact
import ipywidgets as widgets

custom modules
import scipy.io.wavfile as wav

import simpleaudio as sa # generates sounds
from tftb.processing import Spectrogram # computes a time-frequency "map" of a s

with the following, the plots are opened as separate windows in full resolution
#ematplotlib

fs = 44100 # sampling frequency in audio cards is 44.1 kHz for CD-quality a
samples = 65536 # samples used for the FFT

The Fourier Transform

Theory recap

The Fourier Transform S(f) of a time-dependent signal s(t) is defined as:

S(f) = / " s(t)e- ity

o0

The Discrete Fourier Transform S(m) of a finite sequence s(n) is defined as:

N—
S(k) = s(n)e ®™*N k=0,1,...,N-1

n=

[ay

Where N is the length of the s(n) sequence, as well as the length of the S(m) sequence of frequency
samples.

Testing live

Let's explore the properties of some simple audio signals live. The quantizeandplay() functionis a
simple quantizer to play the signal with either 8-bit or 16-bit levels. Note that the quantization process
introduces an error equal to half the least significant bit, therefore the Signal-to-Noise ratio (SNR) is:

SNRyz = 210 logio(2") ~ 6n [dB]

Where n is the number of bits. Therefore with 8 bit (typical for radio-quality or mobile-phone-quality

audio), the SNR is 48 dB. With 16 bit (the standard for CD-quality audio), the SNR is 96 dB.

def plottimefreq(s, duration, small=False) :
plot the time series of the signal s
plt.subplots (figsize=(25, 5))
ax = plt.subplot(l, 3 - int(small), 1)
plt.plot (np:teal (s)i)

plt.x1im(0)
ax.set xlabel (&t [ms]")
maxx = int (duration*10 + 1) *100

ax.set xticks(np.arange (0, maxx*fs/1000, maxx*fs/10000, dtype=int))
ax.set xticklabels (np.arange (0, maxx, maxx/10, dtype=int))

plt.grid (which="major")

plt.title ("Wave packet")

also compute and plot power spectral density

ax = plt.subplot(l, 3 - int(small), 2)

s = np.pad(s, (0, samples-s.size), mode='constant')
W npabsinp. EEeRBEE (s) N *EuD)

f = np.fft.fftfreq(s.size, 1/fs)

pliEtp Lot (&)

plt.x1lim (20, 10000)

#formatter = LogFormatter (labelOnlyBase=False, minor;thresholds:(l, 0.1))
#ax.get_xaxis().set_mino;_formatter(formatter)
ax.set xlabel ('f [Hz]')

plt.ylim(1E-4)

plt.xscale('log"')

plt.yscale('log')

plt.grid(which="'both')

plt.title("Power spectral density (log/log)")
plt.show ()

def quantizeandplay (s, quant):
if quant not in [4, 8, 16]:
raise Exception ('Unsupported quantization')

gfactor = (2** (quant-1) - 1) * 1.0 / np.max (np.abs(s))
playable = s * gfactor
playable = playable.astype (np.intlé if quant == 16 else np.int8)

stop any ongoing play

sa.stop all()

play on a single audio channel with either 1 or 2 bytes per sample according
sa.play buffer (playable, 1, 2 if quant == 16 else 1, fs)

rescale the quantized signal

return playable.astype (float) / gfactor

The interactive code below creates simple audio signals, plays them and shows the plots from the
above function

@interact (f=widgets.FloatLogSlider (min=10gl0 (20), max=loglO (20000), wvalue=440, con
duration=widgets.FloatSlider (min=0.1, max=1.4, value=l, step=0.01, conti
#quantization=widgets.RadioButtons (options=[16, 8, 4, None]),

)
def playwavelet (£, duration):
t = np.linspace (0, duration, int (duration * fs), False)
quantization = 16

generate the wave
S = np.sin(2 * np.pi * £ * t)

play it if required, and plot it
if not quantization:
ag=s
else:
g = quantizeandplay (s, quantization)
plottimefreq(q, duration)

The Uncertainty Relation in action

In the following, we plot a "single-frequency" wavelet and its power spectral density, and compare their

time vs. frequency spreads:

¢ by varying the duration of the wavelet

¢ by varying the enveloping or windowing signal (rectangular i.e. no window, Hann, Hamming, or
Gaussian)

¢ by varying the fraction of the signal that is smoothed by the window

We can "see" how a short time spread yields a large frequency spread, and we can "hear" how the
sound progressively becomes a tic with no clear pitch! Also, note how the absence of a windowing
signal produces a click at the beginning and at the end of the signal, whereas the smoothest sound

comes with the Gaussian windowing.

@interact (f=widgets.FloatLogSlider (min=10gl0 (20), max=loglO (20000), wvalue=100, con
duration=widgets.FloatSlider (min=0.01, max=0.5, value=0.2, step=0.01, co
window=widgets.RadioButtons (options=['rect', 'hann', 'hamming', 'gaussia
gauss_stdev=widgets.IntSlider (min=100, max=8000, value=5000, continuous_
win frac=widgets.Floatslider (min=0.01, max=1.00, value=1.00, step=0.01,
#quantization=widgets.RadioButtons (options=[16, 8, 4, None]),

)
def playwavelet (f, duration, window, gauss stdev, win frac):
t = np.linspace (0, duration, int (duration * fs), False)
quantization = 16

generate the fundamental wave

S = np.sin(2 * np.pi * £ * t)
use a window to smooth begin and end
if window == 'hann':
w = np.hanning(s.size * win frac)
elif window == 'hamming':
w = np.hamming(s.size * win frac)
elif window == 'gaussian':
W = ss.gaussian(int(s.size * win frac), duration*win frac*gauss_ stdev)
if window != 'rect':

apply the window at the ramp up and ramp down of the signal
for i in range(int(w.size/2)):

S S]

s[s.size-int(w.size/2)+1i] *= wl[int(w.size/2)+1i]

play it if required, and plot it
if not quantization:
P =s
else:
p = quantizeandplay (s, quantization)
plottimefreq(p, duration)

Time-Frequency Analysis

The energy distribution of a transient signal can be obtained for instance with the spectrogram, defined
from the Short-Time Fourier Transform:

+00
Sult, f) = / s(r)w(r — te 27 dr

o0

Where w(t) is a windowing function, typically Hamming or Gaussian. The spectrogram is defined as
2
|Sst(ta f)| :

The Uncertainty Relation can be seen at play in the time-frequency plane as the "area" occupied by a
signal cannot be arbitrarily small: a signal can either be localized over the ¢ axis or over the f axis, not
both. Again, the maximum localization in both axis, i.e. the minimal area, is achieved with a Gaussian

signal.

@interact (f=widgets.FloatLogSlider (min=10gl0 (100), max=1loglO (1000), wvalue=300, con
duration ms=widgets.IntSlider (min=1, max=500, value=100, step=1l, continu
window=widgets.RadioButtons (options=['rect', 'hann', 'hamming', 'gaussia
win frac=widgets.FloatsSlider (min=0.01, max=1.00, value=1.00, step=0.01,

)

def playwavelet (f, duration ms, window, win frac):

t = np.linspace (0, duration_ms/lOOO, int(duration_ms/lOOO * fs), False)

generate the fundamental wave
s = 1000 * np.sin(2 * np.pi * £ * t)
use a window to smooth begin and end

if window == 'hann':
w = np.hanning(s.size * win frac)
elif window == 'hamming':
w = np.hamming(s.size * win frac)
elif window == 'gaussian':
w = ss.gaussian(int(s.size * win frac), duration ms*win frac¥*4)
if window != 'rect':

apply the window at the ramp up and ramp down of the signal
for i in range(int(w.size/2)):
s[i] *= wl[i]

s[s.size-int (w.size/2)+1i] *= wl[int(w.size/2)+i]

pad the signal, resample to speed up computation, and compute the spectrogra

the window function is 200 times shorter than the input signal to accurately

padding = int ((samples/2-s.size) /2)

sp = Spectrogram(ss.resample (np.pad(s, (padding, padding), mode='constant'), 2
fwindow=np.hamming (int (s.size/100)+1)) # ss.gaussian (int (s.

sp.run ()

sp.plot (kind='contour', scale='log', threshold=0.01)

add the usual time domain and frequency domain plots for reference
plottimefreq(s, duration_ms/lOOO, small=True)

