Description of Seed finding Kernels

Beomki Yeo

a\ts ATLAS (&) nep
BERKELEY i EXPERIMENT o o

1

Cuda Seed Finding Flow

doublet_counter_container, m_mr);

traccc::cuda: :doublet_finding(
m_seedfinder_config, isp_container, doublet_counter_container,

mid_bot_container, mid_top_container, m_mr);

traccc::cuda::triplet_counting(m_seedfinder_config,
isp_container, doublet_counter_container,
mid_bot_container, mid_top_container,

triplet_counter_container, m_mr);

traccc::cuda: :triplet_finding(
m_seedfinder_config, m_seedfilter_config, isp_container,
doublet_counter_container, mid_bot_container, mid_top_container

triplet_counter_container, triplet_container, m_mr);

traccc::cuda: :weight_updating(m_seedfilter_config, isp_container,
triplet_counter_container,

triplet_container, m_mr);

traccc::cuda::seed_selecting(

m_seedfilter config, isp_container, doublet_ counter_container,

triplet_counter_container, triplet_container, seed_container, m_mr);

return seed_container;

Doublet counting
o Counts the number of doublets for every middle
spacepoint

Doublet finding
o Does the same thing with Doublet counting but also
adds the found doublets into the container in a
sorted order

Triplet counting
o Counts the number of triplets for every middle-
bottom doublet

Triplet finding
o Does the same thing with Triplet counting but adds
the found triplets into the container in a sorted
order

Weight updating
o Forevery triplet, iterates over other triplets with
the same middle-bottom doublets to update its
weight based on the number of compatible triplets
(curvature and distance)

Seed selecting
o Seed selecting based on experiment-dependent cuts

2

Doublet, Triplet and Seed Container

o The (bottom and top) spacepoints in neighbor bins are accessed with the index of
neighbor bins and spacepoint in the internal spacepoint container

o Multiplet (doublet and triplet) struct is defined with the index member variables,
while seed struct takes spacepoint as member variable

Doublet definition Triplet definition Seed definition

// Bottom - Middle - Top
struct triplet {
sp_location spl; // bottom

struct seed {

// Middle - Bottom or Middle - Top
struct doublet {

sp_location spi;

spacepoint spB;

spacepoint spM;

sp_location sp2; sp_location sp2; // middle

spacepoint spT;

sp_location sp3; // top

}s

scalar curvature;

float weight;

. . 1 ight;
Spacepoint location eelel M

struct sp_location {

float z_vertex;

scalar z_vertex;

/// index of the bin of the spacepoint gri
ned int bin_idx;
/ index of the spacepoint in the bin
unsigned int sp_idx;

};

o Container
o Header: number of doublets or triplets per bin
o Item: doublets or triplets per bin

using host_doublet_container = host_container<unsigned int, doublet>;

Doublet and Triplet Counter Container (only for gpu)

o Counter objects are used to count the number of doublet or

triplet

Doublet counter container: counts number of doublets per middle space point

using host doublet counter container = struct doublet_counter {

host_container<unsigned int, doublet_counter>;

sp_location spM;

size_t n_mid_bot

Header: number of compatible middle sp per bin

ltem: doublet counter for compatible middle sp Zalas 5 Lt E9)

};

using host_triplet_counter_container =

struct triplet counter {
host_container<unsigned int, triplet_counter>; doublet mid_bot_doublet;

Header: number of compatible middle-bot doublets per bin size_t n_triplets
Item: triplet counter for compatible middle-bot doublets };

Thread block configuration policy

o One thread for one item object (spacepoint or doublet or triplet)

o—0Bne-blockforonegrid-bin : The number of blocks is not enough to fill GPU resources

o Multiple blocks for one grid bin
o If the number of items is larger than the number of threads, assign more blocks
for the grid bin

Kernel 1: Doublet Counting

o Thread block setup
* Num threads: 2 X 32
* Num blocks (Np):

130

Np =) N; where N; = num of middle spacepoint of i-th bin/num of threads + 1
i=1

o Every thread (for a middle spacepoint) iterates over bottom and top
spacepoints in neighbor bins to count doublets

o If the number of middle-bottom and middle-top doublets is more
than zero, doublet counter object is recorded

if (n_mid bot > © & n_mid top > 0) {

auto pos = atomicAdd(&num_compat spM per _bin, 1);

doublet counter_per_bin[pos].spM = spM _loc;
doublet counter_per_bin[pos].n_mid bot = n_mid _bot;

doublet counter_per_bin[pos].n_mid top = n_mid_top;

Kernel 2: Doublet Finding

o Thread block setup
o Num threads: 2 X 32

o Num blocks (Np):

130
Ny = z N; where N; = num of compatible middle sp of i-th bin/num of threads + 1

=1

o Every thread (for a compatible middle sp) iterates over bottom and
top spacepoint in neighbor bins to record the doublet objects

o The doublet counter is used to pre-assign the memory space for
doublet objects

Kernel 2: Doublet Finding (cont.)

Internal loop

»

Bottom
spacepoints

number of mid-bot doublets for 2" middle spacepoint

N
r N

Middle-bottom
doublet container

N J
Y

number of mid-bot doublets for 15t middle spacepoint

Internal loop

»

Top
spacepoints

number of mid-top doublets for 2" middle spacepoint

A
- A

Middle-top
doublet container

N J
Y

number of mid-top doublets for 15t middle spacepoint

Kernel 2: Doublet Finding (cont.)

o Thread 1: 15t middle spacepoint

Internal loop

Bottom
spacepoints

Middle-bottom
doublet container

~
\ .‘
~

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

=
-
L -~

Top
spacepoints

¥ 4--
Internal loop
|-
»
e ,—" _____
- - -
- - ‘—‘
-
-7 - - -
s = ==
- e T
- - -
- - -
A"- - l----" i
4- 4--

Middle-top
doublet container

Kernel 2: Doublet Finding (cont.)

o Thread 2: 2" middle spacepoint

Internal loop

A

spacepoints |

Middle-bottom . " X
doublet container

Internal loop

»

Top
spacepoints

Middle-top “a -
doublet container

10

Kernel 2: Doublet Finding (cont.)

o Thread 3: 3 middle spacepoint

Internal loop

»

Bottom
spacepoints

Middle-bottom
doublet container

Internal loop

»

Top
spacepoints

Middle-top
doublet container

11

Kernel 2: Doublet Finding (cont.)

o Thread 4: 4t middle spacepoint

Internal loop

Bottom
spacepoints

.‘

Middle-bottom
doublet container

Internal loop

»

Top
spacepoints

Middle-top
doublet container

A

12

Kernel 3: Triplet Counting

o Thread block setup
o Num threads: 8 X 32
o Num blocks (Np):
130

N, =) N; where N; = num of mid-bot doublets of i-th bin/num of threads + 1
i=1

o Every thread (for a middle-bottom doublet) iterates over middle-top
doublets, whose middle spacepoint is the same, to count triplets

o If the number of triplets for a middle-bottom doublet is more than
zero, triplet counter object is recorded

if (n_triplets > @) {
auto pos = atomicAdd(&num_compat mb_per_bin, 1);

triplet_counter_per bin[pos].n_triplets = n_triplets;

triplet counter_per bin[pos].mid bot doublet = mid bot doublet;

Kernel 4: Triplet Finding

o Thread block setup
o Num threads: 2 X 32
o Num blocks (Np):

130

Ny = z N; where N; = num of compatible mid-bot doublets of i-th bin/num of threads + 1
i=1

o Every thread (for a compatible middle-bottom doublet) iterates over middle-top
doublets, whose middle spacepoint is the same, to record the triplet objects

o The triplet counter is used to pre-assign the memory space for triplet objects

14

Kernel 4: Triplet Finding (cont.)

Middle-bottom
doublet container

Middle-top
doublet container

Triplet container

Internal loop

»

number of triplets for 2" middle-bottom doublet

K_H

J

v
number of triplets for 15t middle-bottom doublet

15

Kernel 4: Triplet Finding (cont.)

o Thread 1: 15t middle-bottom doublet

Middle-bottom
doublet container

Internal loop
Middle-top

doublet container

\.

€«-4-------

Triplet container

Kernel 4: Triplet Finding (cont.)

o Thread 2: 2" middle-bottom doublet

Middle-bottom
doublet container

Internal loop

Middle-top
doublet container

PR

- N
-
-

A7

Triplet container

Kernel 4: Triplet Finding (cont.)

o Thread 3: 39 middle-bottom doublet

Middle-bottom
doublet container

Middle-top
doublet container

Triplet container

Internal loop

18

Kernel 4: Triplet Finding (cont.)

o Thread 4: 4th middle-bottom doublet

Middle-bottom
doublet container

Internal loop

Middle-top -
doublet container

A

Triplet container X

Kernel 5: Weight Updating

o Thread block setup
o Num threads: 2 X 32
o Num blocks (Np):

130

Ny = z N; where N; = num of triplets of i-th bin/num of threads + 1
i=1

o Every thread (for a triplet) iterates over triplets, whose middle-
bottom doublet is the same, to update the weight of triplet

20

Kernel 6: Seed Selecting

o Thread block setup
o Num threads: 2 X 32
o Num blocks (Np):
130

Ny = z N; where N; = num of compatible mid-bot doublets of i-th bin/num of threads + 1
i=1

o Seeds are filtered based on experiment-dependent parameters

Seed finding Timing Benchmark

Elapsed time [sec]

1.00

0.75

0.50

0.25

® acts_cpu @ traccc_cpu

CPU: i7-1050H CPU (2.6 GHz)

GPU: RTX 2070
Release build

acts cuda @ acts cuda2 | ® traccc_cuda

100 events average

3000

number of pions simulated

4000 5000

22

Kernel timeline

ligration...

. GPU Page Fau...

ligration...

Data Migration...

Data Migration...
Memory Thras...

1=
H_J

Binning on cpu + vector resizing

Data Migration...
GPU Page Fau...
Data Migration...
Fage Throttling

Data Migration...
GPU Page Fau...
Data Migration...
Memory Thras...

Data Migration...
GPU Page Fau...
Data Migration...
Memory Thras...

Data Migration...
GPU Page Fau...
Data Migration...

Memory Thras...

Data Migratior
GPU Page Fau
Data Migratior
Memory Thras

o Spacepoint binning time on cpu = seed finding time on gpu

23

Some issues found

o Multi-threading with NVIDIA mps server works normally
o Have not checked the speedup with multi-threading yet since the
most of wall time is occupied hit reading which makes harder it to
make fair comparison

o It was found that V100 in cori server runs slightly slower than RTX 2070 of
my laptop.

Summary and Outlooks

o The speedup over acts_cpu seed finding is about x29 for 4000 simulated pions

o Planning to profile what limits the performance on V100

What should be more implemented for GPU (any volunteer?):
1. Spacepoint binning with grid and axis

2. Track parameter estimation from seed

