Operational Experience with the Belle II Silicon-strip Vertex Detector

Gagan Mohanty
(on behalf of Belle II SVD group)

International meeting on "Tracking detectors for particle colliders - present and future"

- iii Thursday Oct 28, 2021, 8:55 AM → 5:45 PM Europe/London
- Virtual
- 🔐 Aashaq Shah (University of London (GB)) , Adrian Bevan (Queen Mary University of London (GB))

Outline of the talk

- Enter SuperKEKB and Belle II
- ☐ Silicon-strip vertex detector (SVD) highlights
- Operational experience
- Performance
 - Cluster position resolution
 - ➤ Hit-time resolution
 - Charged particle identification
- ☐ Beam background and radiation effects
- ☐ Summary and outlook

SuperKEKB and Belle II

- ☐ Second-generation flavor factory
 - Asymmetric e^+e^- collisions at $\Upsilon(4S)$ resonance \Rightarrow 10.58 GeV
 - Target \mathcal{L}_{int} : 50 ab⁻¹ and \mathcal{L}_{peak} : $60 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$ (30× KEKB)
 - Current record: $3.1 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- Raison d'être of Belle II
 - Search for new sources of CP violation and probe physics beyond the standard model at the intensity frontier
 - Physics requirements call for precise vertexing, low-momentum tracking and particle identification (PID)

Vertex Detector is a key component in this pursuit

The Vertex Detector

- ☐ Physics requirements:
 - ▶ Better vertexing resolution than Belle to compensate reduced boost ⇒ improved point resolution, reduced inner radius, and lower material budget
 - Able to operate in high beam background

 ⇒ hit rate: 3 MHz/cm²@ SVD layer-3
 - Radiation hard \Rightarrow 0.2 Mrad/yr @ SVD layer-3
- ☐ Pixel Detector (PXD)
 - ➤ DEPFET pixel sensors: Layers 1-2 (partial L2)
- ☐ Silicon-strip Vertex Detector (SVD)
 - Double-sided Si strip sensors: Layer 3-6
 - \triangleright Standalone tracking and PID for low p_T charged particles
 - Extrapolate tracks to PXD (Region of interest)

SVD in one slide

- 4 layers of modules ('ladders') mounted on end-rings supported by CF structures
 - > Barrel shape in L3
 - Lantern shape in L4-6 (slanted FW sensors)⇒ minimize material budget
 - \triangleright Polar angle coverage: $17^{\circ} < \theta < 150^{\circ}$
- ☐ Signals from all sensors are routed to frontend ASICs via flexible circuits
- Dual-phase CO_2 cooling $(-20^{\circ}c)$ with thin stainless steel pipes
- ☐ Total silicon surface area: 1.2 m²
- Material budget: 0.7% X₀ per layer

Layer	Ladder	Institute
3	7(+1)	Melbourne
4	10(+2)	TIFR Mumbai
5	12(+3)	HEPHY Vienna
6	16(+4)	Kavli IPMU

INFN Pisa: Layer 4-6 forward (FWD) and backward (BWD) modules

Sensors and ASIC

Origami 'chip-on-sensor' concept⇒ small capacitive noise

BWD 3 FWD z [cm] -30 -20 -10 0 10 20 30 4

60

20

172 sensors

r [cm]

- x120 **Small** Trapezoidal Large # of p-strips* 768 768 768 p-strip pitch* 50 µm 75 µm 50-75 µm # of n-strips* 768 512 512 160 µm 240 µm n-strip pitch* 240 µm thickness 320 µm 320 µm 300 um **HPK** manufacturer Micron
 - *readout strips one floating strip on both sides

- ☐ APV25 chips designed for CMS tracker
 - Fast: 50 ns shaping time
 - ➤ Rad hard: > 100 MRad
 - > 128 channels per chip
 - Operate in the multipeak mode @ 32 MHz
 - Consume 0.4W per chip

Various milestones

- □ 09-2008: Origami concept established
- ☐ 10-2010: Belle II TDR arXiv:1011.0352
- □ 05-2015: First completed SVD ladder
- □ 02/07-2018: 1st/2nd "half shell" assembled
- □ 11-2018: Installed to Belle II
- □ 03-2019: 1st collision data with full VXD

Operational experience in brief

- Reliable and smooth operation since Mar 2019
- Excellent detector performance
- \blacksquare Hit efficiency > 99% in most sensors
- ☐ Reasonable cluster charge distribution
- ☐ Very good SNR in the range 13-30
- ☐ Improved simulation better agrees with the collision data

Hit efficiency

N Efficiency Summary (in %)

- Efficiency very high and stable in time
- \supset > 99% for majority of sensors

layer	$\varepsilon(u/P)(\%)$	$\varepsilon(v/N)(\%)$
3	99.83 ± 0.01	99.48 ± 0.03
4	99.69 ± 0.03	99.68 ± 0.03
5	99.66 ± 0.03	99.77 ± 0.04
6	99.31 ± 0.08	99.58 ± 0.06

2020 data

Cluster position resolution

- \Box Measured in e⁺e[−] → μ⁺μ[−] data
- ☐ Estimated from the residual of cluster position with respect to the track

- Position resolution in agreement with expectations from strip pitch
- ☐ Work continues to further improvement, especially in the u/P side

PID using SVD

Low p_T charged particles are mostly unable to reach CDC

- Exploit the specific ionization (dE/dx) information of SVD to identify various charged particles, especially pions vs. kaons
- Use control samples of kinematically identified $D^{*+} \to D^0(K^+\pi^-)\pi_s^+$ and $\Lambda \to p\pi^+$ decays

PID performance

- Addition of SVD dE/dx information leads to significant improvement in the PID performance
- Data-MC difference arises mostly due to a suboptimal simulation of the cluster energy ⇒ work in progress

Hit-time resolution

- 6 samples per strip are available for reconstruction
- Study of waveform of the APV25 output signal yields an excellent hittime resolution of ~ 2.35 ns
- ☐ Cluster time information will be exploited in future to suppress off-time beam background ("pileup") hits

Going from 6- to 3-sample

- ☐ Ideal 3 samples provide enough information as 6 samples
 - Amplitude: peak ADC sample
 - ➤ Hit-time: rising edge of the waveform
- Degrades if the trigger timing is largely shifted
 - ⇒ CDC event time is a good estimator
- □ Determine the relative hit efficiency (3-sample eff./6-sample eff.) using information from CDC,
 SVD and PXD
- Relative efficiency > 99% for a trigger timing shift within ± 30 ns

3-sample reconstruction will be key for the high-luminosity operation

Beam background and hit efficiency

- Beam background increases SVD hit efficiency, especially for L3, leading to a degraded performance
- Present limit in L3: ~3% (can be relaxed by twice once we exploit hit-time)
- With current luminosity, average L3 hit efficiency is under control: < 0.5%
- Projection of hit occupancy at the design peak luminosity for L3: 3%
- However, there is a potentially large error associated with background extrapolation

Efforts are underway for VXD upgrade: MAPS, SOI, TFP-SVD

Radiation effects on strip noise

- □ Noise increase of 20-25% in layer 3, though does not affect performance
- ☐ Likely due to radiation effects on the sensor surface
 - Nonlinear increase due to fixed oxide charges that increase the interstrip capacitance, expected to saturate
- ☐ Saturation see on the v/N side and starting to be seen on the u/P side

Summary and outlook

- SVD has been successfully recording data since Mar 2019 ⇒ smooth and reliable operation
- Very good and stable performance ⇒ there is still room for improvement, especially in tuning of simulation
- ☐ Radiation damage is visible but has not yet affected performance
- Need to carefully follow operation, data quality and radiation damage effects
- ☐ Prepare system to cope with higher beam background condition