Radiation detectors: from particle physics to medicine (with a bias toward cancer)

Dr Barbara Camanzi

STFC – UKRI
Rutherford Appleton Laboratory

An introduction to myself

- Born and grew up in Ravenna Italy
- Italy: University of Ferrara
 - Laurea (1990) and PhD (1995) in particle physics
 - Post-doc in medical physics (1995 1997)
- > UK
 - Brunel University: post-doc in particle physics (1997 2002)
 - CCLRC / STFC (RAL): Particle Physics Department (2003 2012)
 - University of Oxford: Visiting Lecturer (2009 2019)
 - STFC: Cancer Care Strategy Leader (2009 2013) and Head of Healthcare (2013 present)
- Switzerland: CERN
 - Scientific associate (2001 2002)

Outline

- 1. Why medicine?
- 2. The present
- 3. The future
- 4. Summary

1. WHY MEDICINE?

My answer

- Because medicine:
 - 1. Saves lives
 - 2. Improve quality of life
- There is a long history of successful applications of particle physics technologies to medicine

From particle physics to medicine

"From new medicines to cancer treatment, the tools of particle physics play an important role in hospitals around the world.
The same particle-physics technology used to understand the universe is also used to improve health and medicine."

K. Izlar, "How particle physics can save your life", Symmetry (2013) available at: http://www.symmetrymagazine.org/article/november-2013/how-particle-physics-can-save-your-life

"Do you want to see particle physics in action? Walk into a nuclear medicine department and look around you!"

Prof P. Evans, University of Surrey

Positron Emission Tomography

Multi-modality imaging:
PET + CT

Some of first PET images from CERN in late 1970s

Radiation detectors in medicine

"The significant advances achieved during the last decades in material properties, detector characteristics and high-quality electronic system played an ever-expanding role in different areas of science, such as high energy, nuclear physics and astrophysics. And had a reflective impact on the development and rapid progress of radiation detector technologies used in medical imaging."

D. G. Darambara, "State-of-the-art radiation detectors for medical imaging: demands and trends", Nucl. Inst. And Meth. A 569 (2006) 153-158

Which is which?

CMS ECAL module

PET scanner module

2. THE PRESENT

The patient journey

- 1. Detection/Diagnosis
- 2. Treatment
- 3. Post-treatment

Detecting/diagnosing a disease

- > Imaging:
 - Computed Tomography
 - **2.** MRI
 - 3. Planar X-ray imaging
 - 4. Positron Emission Tomography
 - 5. Single Photon Emission CT
 - 6. Ultrasound

- Endoscopy
- Tests on samples:
 - 1. Tissue (biopsy)
 - 2. Blood
 - 3. Body fluids

Treating cancer with radiation

- External beam radiotherapy:
 - 1. X-ray beam
 - 2. Electron beam
 - 3. Proton/light ion beam
- Internal radiotherapy:
 - 1. Sealed sources (brachytherapy)
 - 2. Radiopharmaceuticals
- Binary radiotherapy:
 - 1. Boron Neutron Capture Therapy (BNCT)
 - 2. Photon Capture Therapy (PCT)

Detector applications in medicine

- Detection/diagnosis
 - 1. Imaging systems in secondary care

- Treatment of cancer
 - 1. Imaging systems in secondary care for treatment planning and monitoring
 - 2. Dosimetry
 - 3. Beam monitoring and Quality
 Assurance

Solid state detectors (Si, diamond) (Beam location and abort, vertex reconstruction, tracking)

- Gas detectors
 (Tracking, calorimetry, muon detectors)
- Scintillating materials + photon detectors (Calorimetry)

Medical physics

- > Detectors for particle physics and medicine have different requirements:
 - Detector for medical application is a "special detector" → custom design → avoid the trap of "a solution looking for a problem"

A "special detector": an example

μ-strip silicon detector

	Particle physics	Medical physics
Application	Charged particle tracking	Digital radiology: X-ray imaging
Typical dimensions	5x5 cm², thickness ≤ 500 μm	20x20 cm², thickness 300 μm ÷ 3 mm
Electronics	For MIP (70 keV in 300 μm): • Low noise: 500 ÷ 1000 e ⁻ • Reasonably fast: 100 ÷ 1000 ns • VLSI	For X-rays (down to 10 keV): • Low noise: 200 e ⁻ • Fast: 10 ÷ 100 ns • VLSI
Trigger	External trigger	Self-triggering
DAQ	For collider: Low multiplicity Fast acquisition	For digital radiology: • 5x10 ⁴ Hz/mm ² → 2x10 ⁹ Hz on 20x20 cm ² • 1 s acquisition time
N. of channels	$10^5 \div 10^7$	$10^3 \div 10^4$
Event size	10 ⁶ bytes (raw data, level 1 trigger)	1 bit – 10 bytes
Sellable units	1 (maybe 2!)	$10^3 \div 10^6$

Solid-state detectors

In particle physics

Silicon detectors for tracking, beam location and vertex reconstruction

Diamond detectors for the beam-abort system in BaBar

In medicine

Silicon detectors for imaging, dosimetry and beam location

Diamond detectors for dosimetry

Gas detectors

In particle physics

Gas Electron Multipliers (GEMs): used in TOTEM, COMPASS and NA49

Resistive Plate Chambers: used in ALICE

In medicine

➤ Full imaging system for proton beam radiotherapy proposed by U. Amaldi and F. Sauli using GEM detectors and Resistive Plate Chambers

Scintillators and photon detectors

In particle physics

Various scintillating materials and photon detectors used for calorimetry systems

CMS ECAL

In medicine

- Various scintillating materials and photon detectors used in nuclear medicine imaging:
 - 1. Computed Tomography (CT)
 - 2. Positron Emission Tomography
 - 3. Single Photon Emission CT

Computed Tomography

Diode

Scintillator

Collimator

CT scanner:

- > 120 keV X-ray source
- Diametrically opposite detector unit
- > X-ray source and detector unit rotate around the patient

Courtesy M. Partridge

20/29

Positron Emission Tomography

PET scanner:

- > Source = β^+ emitter injected into body \Rightarrow two back-to-back 511 keV γ from positronium decay
- Stationary rings of detectors

Single Photon Emission CT

SPECT scanner:

- > Source = $^{99}Tc^m$ injected into body > one 141 keV γ
- > Two or three rotating detector heads
- Each head = gamma camera

3. THE FUTURE

The future: precision medicine

- > The future is precision medicine, but what is it?
 - Intervention targeted to each individual, no more one size fits all
 - Better quality of life during and after intervention
- Particle physics can help by providing new detectors for:
 - 1. Better and earlier diagnosis
 - 2. Better radiotherapy treatments
 - 3. Better patient monitoring

Better and earlier diagnosis

- The challenge = the sooner a disease is diagnosed the higher the probability of cure
- Novel detector technologies are needed for:
 - Improved anatomical imaging systems for screening
 - Reliable and (low-tech) easy to use systems for early diagnosis in primary care
 - More accurate, more quantitative and highly repeatable imaging, with less associated dose for functional imaging systems for diagnosis in secondary care

Better radiotherapy treatments

- The challenge = provide radiotherapy that achieves higher local tumour control + less side-effects, including lower probability of secondary cancer
- Novel detector technologies are needed for:
 - Low-dose, high-quality imaging for Image Guided RadioTherapy (IGRT), organ motion management and treatment planning
 - Beam monitoring and Quality Assurance
 - Dosimetry

Better patient monitoring

- The challenge = patients need to be followed-up:
 - Short-term: to monitor the response to treatment
 - Long-term: to check for late effects (and other diseases/secondary tumours)
- Novel detector technologies are needed for:
 - Low-dose, high-quality imaging systems
 - High throughput

4. SUMMARY

Summary

- In its quest for uncovering the secrets of the Universe, particle physics has been and is pushing the limits of a large variety of detector technologies
- The application of these technologies to medicine has already had a great impact
- The future looks very bright if we keep applying our technologies from particle physics to medicine

Thanks for listening...

...any question?

