Pushing high-energy neutrino physics to the cosmic frontier

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

CERN Theory Colloquium October 13, 2021

VPLATE (vplate.ru)

VPLATE (vplate.ru)

VPLATE (vplate.ru)

How it started

How it's going

PeV v

discovered

First predictions of high-energy

cosmic v

Hints of sources First tests of v physics EeV v discovered Precision tests with PeV v First tests with EeV v

Figure courtesy of Markus Ahlers Maoloud, De Wasseige, Ahlers, **MB**, Van Elewyck, PoS(ICRC2019), 1023

Figure courtesy of Markus Ahlers Maoloud, De Wasseige, Ahlers, **MB**, Van Elewyck, PoS(ICRC2019), 1023

Figure courtesy of Markus Ahlers Maoloud, De Wasseige, Ahlers, **MB**, Van Elewyck, PoS(ICRC2019), 1023

Figure courtesy of Markus Ahlers Maoloud, De Wasseige, Ahlers, **MB**, Van Elewyck, PoS(ICRC2019), 1023

Figure courtesy of Markus Ahlers Maoloud, De Wasseige, Ahlers, **MB**, Van Elewyck, PoS(ICRC2019), 1023

What makes high-energy cosmic v exciting?

What makes high-energy cosmic v exciting?

What makes high-energy cosmic v exciting?

Next decade: a host of planned neutrino detectors

Next decade: a host of planned neutrino detectors

High-energy neutrinos: TeV–PeV (Discovered)

Ultra-high-energy neutrinos: > 100 PeV (Predicted but undiscovered)

v self-interactions

v self-interactions

TXS 0506+056

IceCube HESE

6 years (this work)

0

_

 $^{-2}$

-3

-4

-5

Mediator coupling $\log_{10}(g_{\alpha\alpha})$

.

Lab gee

 $\phi\beta\beta(\alpha = e)$

MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020

BBN ($\Delta N_{\rm eff} = 1$)

-6 -6

-5 -4 -3 -2 -1 0 1 2 3 4 5Mediator mass $\log_{10}(M/MeV)$

v scattering on Galactic DM

Argüelles, Kheirandish, Vincent, PRL 2017

v decay

v self-interactions

Lab gee

 $\phi\beta\beta(\alpha = e)$

MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020

BBN ($\Delta N_{\rm eff} = 1$)

-5 -4 -3 -2 -1 0 1 2 3 4 5Mediator mass $\log_{10}(M/MeV)$

TXS 0506+056

IceCube HESE

6 years (this work)

coupling $\log_{10}(g_{aa})$

Mediator (

_2

-3

-5

v scattering on Galactic DM

Argüelles, Kheirandish, Vincent, PRL 2017

v decay

Dark matter decay

v self-interactions

Lab gee

 $\phi\beta\beta(\alpha = e)$

MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020

TXS 0506+056

IceCube HESE

6 years (this work)

coupling $\log_{10}(g_{u\alpha})$

Mediator

_2

-3

-5

v scattering on Galactic DM

Argüelles, Kheirandish, Vincent, PRL 2017

v decay

v-electron interaction

-5 -4 -3 -2 -1 0 1 2 3 4 5Mediator mass $\log_{10}(M/MeV)$

v self-interactions

 $\phi\beta\beta(\alpha = e)$

MB, Rosenstrøm, Shalgar, Tamborra, PRD 2020

<u> 1 1 1 1 1 1 1 1 1 1</u>

-5 -4 -3 -2 -1 0 1 2 3 4 5Mediator mass $\log_{10}(M/MeV)$

v-electron interaction

TXS 0506+056

IceCube HESE

6 years (this work)

coupling $\log_{10}(g_{aa})$

Mediator

-3

_ 5

-61

v scattering on Galactic DM

Lorentz-invariance violation

Argüelles, Kheirandish, Vincent, PRL 2017

v decay

Dark matter decay

v self-interactions

v decay

v₂

Fundamental physics with high-energy cosmic neutrinos

Numerous new v physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/PeV)^{-n} \, (L/Gpc)^{-1} \, PeV^{1-n}$

► Improvement over limits using atmospheric v: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

- Spectral shape
- Angular distribution
- ► Flavor composition
- Timing

Fundamental physics with high-energy cosmic neutrinos

► Numerous new v physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$ $\begin{cases}
E.g., \\
n = -1: neutrino decay \\
n = 0: CPT-odd Lorentz violation \\
n = +1: CPT-even Lorentz violation
\end{cases}$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/PeV)^{-n} \, (L/Gpc)^{-1} \, PeV^{1-n}$

► Improvement over limits using atmospheric v: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

- ► Spectral shape
- Angular distribution
- Flavor composition
- Timing

Fundamental physics with high-energy cosmic neutrinos

► Numerous new v physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$ $\begin{cases}
E.g., \\
n = -1: neutrino decay \\
n = 0: CPT-odd Lorentz violation \\
n = +1: CPT-even Lorentz violation
\end{cases}$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} (E/PeV)^{-n} (L/Gpc)^{-1} PeV^{1-n}$

▶ Improvement over limits using atmospheric v: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

Angular distribution
Flavor composition
Timing

Today TeV–PeV v

Turn predictions into data-driven tests Next decade > 100-PeV v

Make predictions for a new energy regime

I. The story so far

Making high-energy astrophysical neutrinos (or p + p)

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3\\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$p \rightarrow \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3\\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^+ \rightarrow \begin{cases} p + \pi^0, \text{ Br} = 2/3 \\ n + \pi^+, \text{ Br} = 1/3 \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \\ \pi^{0} \rightarrow \gamma + \gamma \\ \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu} \\ n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e} \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

	Redshift 🚽	z = 0	0
--	------------	-------	---

Note: v sources can be steady-state or transient

Note: v sources can be steady-state or transient

Note: v sources can be steady-state or transient

TeV–PeV v telescopes, 2021

ANTARES

- Mediterranean Sea
- Completed 2008
- $V_{\rm eff} \sim 0.2 \, \rm km^3 \, (10 \, TeV)$
- $V_{\rm eff} \sim 1 \,\rm km^3 \,(10 \,\rm PeV)$
- ▶ 12 strings, 900 OMs
- Sensitive to v from the Southern sky

IceCube

- South Pole
- Completed 2011
- $V_{\rm eff} \sim 0.01 \ {\rm km}^3 \ (10 \ {\rm TeV})$
 - $V_{\rm eff} \sim 1 \, \rm km^3 \, (> 1 \, \rm PeV)$
- ▶ 86 strings, 5000+ OMs
- Sees high-energy
- astrophysical v

OM: optical module

Baikal NT200+

- Lake Baikal
- Completed 1998 (upgraded 2005)
- $V_{\rm eff} \sim 10^{-4} \, {\rm km}^3 \, (10 \, {\rm TeV})$
 - $V_{\rm eff} \sim 0.01 \, {\rm km^3} \, (10 \, {\rm PeV})$
- ▶ 8 strings, 192+ OMs

IceCube – What is it?

- ► Km³ in-ice Cherenkov detector in Antarctica
- ► > 5000 PMTs at 1.5–2.5 km of depth
- ► Sensitive to neutrino energies > 10 GeV

How does IceCube see TeV–PeV neutrinos?

Deep inelastic neutrino-nucleon scattering

Neutral current (NC)Charged current (CC)

$$v_x + N \rightarrow v_x + X$$

 $v_l + N \rightarrow l + X$

How does IceCube see TeV–PeV neutrinos?

Deep inelastic neutrino-nucleon scattering

At TeV–PeV, the average inelasticity $\langle y \rangle = 0.25-0.30$

How does IceCube see TeV–PeV neutrinos?

Deep inelastic neutrino-nucleon scattering

At TeV–PeV, the average inelasticity $\langle y \rangle = 0.25-0.30$

Energy spectrum (7.5 yr)

100+ contained events above 60 TeV:

Data is fit well by a single power law:

Energy spectrum (7.5 yr)

100+ contained events above 60 TeV:

Arrival directions (7.5 yr)

No significant excess in the neutrino sky map:

Timing

Blazar TXS 0506+056:

IceCube, Science 2018

DESY

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth (
$$\alpha = e, \mu, \tau$$
):
 $f_{\alpha, \oplus} = \sum_{\beta = e, \mu, \tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta, S}$
Standard oscillations
or new physics

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Always in this order: (f_e, f_μ, f_τ)

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Always in this order: (f_e, f_{μ}, f_{τ})

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Always in this order: (f_e, f_μ, f_τ)

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Always in this order: (f_e, f_{μ}, f_{τ})

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$

Full π decay chain (1/3:2/3:0)_s

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$ 0.0 S O -1.0 π decay Full π decay chain 0.1-0.9 $(1/3:2/3:0)_{S}$ 0.2 - 0.8 0.3 -0.7 Fraction of Vr Fraction of NH 0.4 - 0.6 0.5 - 0.5 0.6 -0.30.8 -0.2 0.9 -0.1 1.0 -0.0 *Note:* v and \overline{v} are (so far) indistinguishable 0.0 0.2 0.6 0.7 0.8 0.9 1.0 0.1 0.3 0.40.5 in neutrino telescopes Fraction of v_e

One likely TeV–PeV v production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$ 0.0 $S \oplus$ -1.0 $\bigcirc \bullet \pi$ decay Full π decay chain 0.1 -0.9 $(1/3:2/3:0)_{S}$ 0.2 - 0.8 0.3 0.7 Fraction of Vr Fraction of VH 0.4-0.6 0.5 0.5 0.6 -0.3 0.8 -0.2 0.9 -0.11.0 -0.0 *Note:* v and \overline{v} are (so far) indistinguishable 0.8 0.0 0.1 0.2 0.3 0.40.5 0.6 0.7 0.9 1.0 in neutrino telescopes Fraction of v_e

in neutrino telescopes
II. High-energy and ultra-high-energy neutrino physics

.Heavy relics	·L	• DM- orentz+CPT violatio	v interaction •DE-v interaction on Neutrino decay•
DM annihilation DM decay .	Secr • Sterile v	ong-range interacti et vv _e interactions Effective	ons• Supersymmetry• e operators _•
	Boosted DM. [•] Leptoquarks •NSI Extra dimensions. •Superluminal v •Monopoles		

Today TeV–PeV v

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties

Today TeV–PeV v

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties

Next decade > 100-PeV v

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties Next decade > 100-PeV v

Make predictions for a new energy regime

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties Next decade > 100-PeV v

Make predictions for a new energy regime

<u>Key developments</u>: Discovery New detection techniques Better UHE v flux predictions

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties Next decade > 100-PeV v

Make predictions for a new energy regime

<u>Key developments</u>: Discovery New detection techniques Better UHE v flux predictions

Made robust and meaningful by accounting for all relevant particle and astrophysics uncertainties

<u>Key developments</u>: Bigger detectors → larger statistics Better reconstruction Smaller astrophysical uncertainties Next decade > 100-PeV v

Make predictions for a new energy regime

<u>Key developments</u>: Discovery New detection techniques Better UHE v flux predictions

Similar to the evolution of cosmology to a high-precision field in the 1990s

Made robust and meaningful by accounting for all relevant particle and astrophysics uncertainties Not knowing the sources

Not knowing the v production mechanism Low statistics / limited reconstruction

BSM using TeV– EeV v

Copyright of Universal Pictures

(Also us) (If we factor in all the uncertainties)

Copyright of Universal Pictures

Two examples

Good chances of discovery or setting strong bounds

Keep ourselves grounded by accounting for all relevant particle and astrophysics unknowns
Flavor: Towards precision, finally (with the help of lower-energy experiments)

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth (
$$\alpha = e, \mu, \tau$$
):

$$f_{\alpha, \oplus} = \sum_{\beta = e, \mu, \tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta, S}$$
Standard oscillations
or
new physics

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

Theoretically palatable flavor regions $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Оr

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian Ingredient #2:

Theoretically palatable flavor regions

= MB, Beacom, Winter, PRL 2015 Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

0r

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, PRL 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

0.65

0.55

 $\sin^2 \theta_{23}$

0.60

2020: Use χ^2 profiles from 2.0 the NuFit 5.0 global fit 1.8 (solar + atmospheric 1.6 1.4 + reactor + accelerator) 1.2 Esteban *et al.*, *JHEP* 2020 $\delta_{\rm CP}/\pi$ www.nu-fit.org 1.0 0.8 0.6 0.4 0.2 NuFit 5.0 0.400.45 0.50

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, PRL 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Note:

Note:

Note:

Note:

Song, Li, Argüelles, MB, Vincent, JCAP 2021

Note:

Note:

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ) Will be overcome by 2040

Measuring the neutrino lifetime

Earth

Measuring the neutrino lifetime

Earth

Baerwald, **MB**, Winter, *JCAP* 2012

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Oscillation physics:

We will know the mixing parameters better (JUNO, DUNE, Hyper-K, IceCube Upgrade)

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Oscillation physics:

We will know the mixing parameters better (JUNO, DUNE, Hyper-K, IceCube Upgrade)

Test of the oscillation framework: We will be able to do what we want even if oscillations are non-unitary

Measuring flavor composition: 2015–2040

Theoretically palatable regions: today (2021)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ) *Will be overcome by* 2040

How knowing the mixing parameters better helps

We can compute the oscillation probability more precisely:

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\alpha} f_{\beta,\mathrm{S}}$$

So we can convert back and forth between source and Earth more precisely

How knowing the mixing parameters better helps

How knowing the mixing parameters better helps

2020

Allowed regions: overlapping Measurement: imprecise

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

Nice

NO, upper θ_{23} octant,

2020

JUNO + HK • π decay: $(1:2:0)_{S}$ 0.1 68% C.R. □ *u*-damped: (0 : 1 : 0)_c 0.9 95% C.R. 0.2 \land *n* decay: $(1:0:0)_{c}$ 99.7% C.R. 0.8 0.3 Fraction of U.S. F. Fraction of VH1 \$ H1.® 0.40.8 0.2 0.9 -0.11.0 0.0 0.2 0.3 0.5 0.6 0.70.8 0.9 1.0 0.0 0.1 04Fraction of v_e , $f_{e,\oplus}$

2030

-1.0

0.0

Allowed regions: overlapping Measurement: imprecise

Not ideal

Allowed regions: well separated Measurement: improving

Nice

2040

Allowed regions: well separated Measurement: precise

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

2040

Allowed regions: well separated Measurement: improving

Nice

Allowed regions: well separated Measurement: precise

Success

Theoretically palatable regions: today (2021)

Repurpose the flavor sensitivity to test new physics:

Repurpose the flavor sensitivity to test new physics:

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, JCAP 2014; Ahlers, **MB**, Mu, PRD 2018; Ahlers, **MB**, Nortvig, JCAP 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Active-sterile v mixing

[Aeikens *et al., JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al., JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

Repurpose the flavor sensitivity to test new physics:

Neutrino decay

[Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Tests of unitarity at high energy

[Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Lorentz- and CPT-invariance violation

[Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Non-standard interactions

[González-García *et al., Astropart. Phys.* 2016; Rasmussen *et al., PRD* 2017]

Active-sterile v mixing

[Aeikens *et al.*, *JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al.*, *JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

Long-range ev interactions [MB & Agarwalla, PRL 2019]

```
Reviews:
Mehta & Winter, JCAP 2011; Rasmussen et al., PRD 2017
```


Neutrino-nucleon cross section: *From high to ultra-high energies*

Accelerator experiments

Accelerator experiments

Accelerator experiments

Accelerator experiments

High-energy vN cross section: *prediction*

High-energy vN cross section: *prediction*

High-energy vN cross section: prediction

MB & Connolly, PRL 2019

Measuring the high-energy vN cross section

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

Measuring the high-energy vN cross section

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

Measuring the high-energy vN cross section

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

BGR18 prediction from: Bertone, Gauld, Rojo, JHEP 2019

See also: García, Gauld, Heijboer, Rojo, *JCAP* 2020

Measurements from: IceCube, 2011.03560 MB & Connolly, *PRL* 2019 IceCube, *Nature* 2017

BGR18 prediction from: Bertone, Gauld, Rojo, JHEP 2019

See also: García, Gauld, Heijboer, Rojo, *JCAP* 2020

Measurements from: IceCube, 2011.03560 MB & Connolly, *PRL* 2019 IceCube, *Nature* 2017

BGR18 prediction from: Bertone, Gauld, Rojo, *JHEP* 2019

See also: García, Gauld, Heijboer, Rojo, *JCAP* 2020

Measurements from: IceCube, 2011.03560 MB & Connolly, *PRL* 2019 IceCube, *Nature* 2017

TeV–PeV:

Earth is *almost fully* opaque, some upgoing v still make it through

TeV–PeV: IceCube

Earth is *almost fully* opaque, some upgoing v still make it through

Earth is *completely* opaque, but horizontal v still make it through

IceCube

>100 PeV:

V

UHE v from *pp* and *pγ* interactions, account for cosmic-ray spectrum & mass composition, source properties

scattering, v_{τ} regeneration

scattering, v_{τ} regeneration

PHYSICS

Searching for the Universe's Most Energetic Particles, Astronomers Turn on the Radio

New radio-based observatories could soon detect ultrahigh-energy neutrinos, opening a new window on extreme cosmic physics

By Katrina Miller on April 27, 2021

Artist's composite of the IceCube Neutrino Observatory in Antarctica, accompanied by a distant astrophysical source emitting neutrinos that are detected in IceCube's subsurface sensors. Credit: IceCube and NSF

READ THIS NEXT

SPACE

South Pole Experiment Traps Neutrinos from Beyond the Galaxy December 1, 2015 – Francis Halzen

SPACE

Neutrinos on Ice: Astronomers' Long Hunt for Source of Extragalactic "Ghost Particles" Pays Off July 12, 2018 – Mark Bowen

SPACE

Didn't Scientists Already Know Where Cosmic Rays Come from? September 22, 2017 – Yvette Cendes

Katrina Miller for *Scientific American*, April 27, 2021 [link]

Ever since their discovery in the 1960s, ultrahigh-energy cosmic rays have

72

After 10 years of IceCube-Gen2 Radio (~2040):

(*If the UHE v fluxes are high*)

Valera, **MB**, Glaser, In preparation

After 10 years of IceCube-Gen2 Radio (~2040):

(*If the UHE v fluxes are high*)

Valera, **MB**, Glaser, In preparation

III. The future

Next decade: a host of planned neutrino detectors

Next decade: a host of planned neutrino detectors

PhD position in high-energy cosmic neutrino physics $\leftarrow INSPIRE \ ad$

Bohr Inst. • Europe

Contact: Mauricio Bustamante (Niels Bohr Institute) mbustamante@nbi.ku.dk

Job description: The Niels Bohr International Academy invites applications for a PhD studentship in high-energy neutrino physics with cosmic neutrinos.

The preferred starting date is April 01, 2022 (earlier dates can be discussed).

Applicants are requested to submit their electronic applications including a cover letter, CV, research statement, BSc and MSc academic transcripts, and two reference letters via Academic JobsOnline. Please see application instructions below.

In order to receive full consideration, complete applications should be received by October 31, 2021.

Pushing neutrino physics to the cosmic frontier

What is Nature like at its most fundamental level? What are its building blocks and how do they interact? What are its organizing principles? These questions lie at the core of Physics, science, and human curiosity. During the last century, we steadily found deeper answers, using increasingly powerful particle accelerators that revealed fundamental particles, interactions, and symmetries. Yet, ample territory remains unexplored at higher energies, ripe for discoveries.

Today, accelerators still churn out valuable data, but, so far, fail to guide us in furthering our view of fundamental physics. Observing particle processes at higher energies would provide guidance, but they lie beyond the reach of accelerator technology. Fortunately, Nature itself provides a way forward: we must turn from man-made particle accelerators to naturally occurring cosmic accelerators. These are extreme phenomena---exploding and colliding stars, black holes---that emit particles with energies millions of times higher than man-made accelerators. Among these, neutrinos stand out as incisive probes of particle physics.

During your PhD, you will learn how to harness the vast potential of high-energy cosmic neutrinos to unearth the particle physics that awaits at the highest, unexplored energies. You will look especially for signs of new physics, beyond the Standard Model.

The principal supervisor will be Assistant Prof. Mauricio Bustamante (INSPIRE profile) at the Niels Bohr International Academy. Your PhD will be part of the project "Pushing Neutrino Physics to the Cosmic Frontier", funded by the Villum Fonden (project no. 29388).

Backup slides

Status quo of high-energy cosmic neutrinos

What we know

- Isotropic distribution of sources
- Spectrum is a power law $\propto E^{-p}$
- At least some sources are gammaray transients
- No correlation between directions of cosmic rays and neutrinos
- Flavor composition: compatible with equal number of ν_e, ν_µ, ν_τ
- No evident new physics

What we don't know

- ► The sources of the diffuse v flux
- The v production mechanism
- ► The spectral index of the spectrum
- ► A spectral cut-off at a few PeV?
- Are there Galactic v sources?
- ► The precise flavor composition
- ► Is there new physics?

Status quo of high-energy cosmic neutrinos

But we have solid theory expectations + fast experimental progress

What we know

- Isotropic distribution of sources
- Spectrum is a power law $\propto E^{-p}$
- At least some sources are gammaray transients
- No correlation between directions of cosmic rays and neutrinos
- Flavor composition: compatible with equal number of ν_e, ν_µ, ν_τ
- No evident new physics

What we don't know -

- ► The sources of the diffuse v flux
- ► The v production mechanism
- ► The spectral index of the spectrum
- ► A spectral cut-off at a few PeV?
- Are there Galactic v sources?
- ► The precise flavor composition
- ► Is there new physics?

(Galactic Center is here)

Upgoing vs. downgoing neutrinos

Neutrinos from the Northern sky ≡ Upgoing neutrinos

- Atmospheric muons stopped
- Dominated by atmospheric v
- High-energy v flux attenuated
- High statistics
- Good for finding sources with through-going muon tracks

Downgoing vs. upgoing neutrinos

Neutrinos from the Southern sky ≡ Downgoing neutrinos

- Need to mitigate atmospheric muons and v:
 - Use higher-energy events
 - ► Use starting a self-veto
- Dominated by astrophysical v (after event selection)
- Low statistics
- Good for measuring the diffuse flux of astrophysical v

IceCube-Gen2

First identified high-energy astrophysical v_{τ}

IceCube, 2011.03561

First identified high-energy astrophysical v_{τ}

IceCube, 2011.03561

Predicted in 1960:

First reported by IceCube in 2021:

IceCube, *Nature* 2021 Glashow, *PR* 1960

IceCube, *Nature* 2021 Glashow, *PR* 1960

IceCube, *Nature* 2021 Glashow, *PR* 1960
First observation of a Glashow resonance

Predicted in 1960: First reported by IceCube in 2021: а Posterior probability density Data 0.5 $\overline{\mathbf{v}}_{e}$ 0.4 hadrons W 6.3 PeV 0.3 $(\pi, n, ...)$ 0.2 Br $\approx 67\%$ е 0.1 0 ż 5 6 8 9 Λ Visible energy (PeV) \overline{v}_{e} W 6.3 PeV

 $\begin{array}{c} V_{e} \\ 6.3 \text{ PeV} \\ e \end{array} \qquad W \qquad l^{+} \\ Br \approx 33\% \\ l^{-} \end{array}$

First observation of a Glashow resonance

Fundamental physics

Fundamental physics with HE cosmic neutrinos

Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/PeV)^{-n} \, (L/Gpc)^{-1} \, PeV^{1-n}$

► Improvement over limits using atmospheric v: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

- Spectral shape
- Angular distribution
- Flavor composition
- Timing

Fundamental physics with HE cosmic neutrinos

 $\blacktriangleright \text{ Numerous new-physics effects grow as } \sim \kappa_n \cdot E^n \cdot L \left\{ \begin{array}{l} n = -1: \text{ neutrino decay} \\ n = 0: \text{ CPT-odd Lorentz violation} \\ n = +1: \text{ CPT-even Lorentz violation} \end{array} \right\}$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/PeV)^{-n} \, (L/Gpc)^{-1} \, PeV^{1-n}$

▶ Improvement over limits using atmospheric v: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

- Spectral shape
- Angular distribution
- ► Flavor composition
- ► Timing

Fundamental physics with HE cosmic neutrinos

 $\blacktriangleright \text{ Numerous new-physics effects grow as } \sim \kappa_n \cdot E^n \cdot L \left\{ \begin{array}{l} n = -1: \text{ neutrino decay} \\ n = 0: \text{ CPT-odd Lorentz violation} \\ n = +1: \text{ CPT-even Lorentz violation} \end{array} \right\}$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/PeV)^{-n} \, (L/Gpc)^{-1} \, PeV^{1-n}$

▶ Improvement over limits using atmospheric v: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

► Spectral shape

► Timing

 Angular distribution
 Flavor composition
 Timing & astrophysical unknowns

Example 1: Measuring TeV–PeV v cross sections

A feel for the in-Earth attenuation

Earth matter density

(Preliminary Reference Earth Model)

Neutrino-nucleon cross section

A feel for the in-Earth attenuation

- Fold in astrophysical unknowns (spectral index, normalization)
- Compatible with SM predictions
- Still room for new physics
- Today, using IceCube:
 Extracted from ~60 showers in 6 yr
 Limited by statistics
- ► Future, using IceCube-Gen2:
 - ► × 5 volume \Rightarrow 300 showers in 6 yr
 - ▶ Reduce statistical error by 40%

Cross sections from: MB & Connolly, PRL 2019 IceCube, Nature 2017

Recent update: IceCube, 2011.03560

Ackermann, MB, et al., Astro2020 Decadal Survey (1903.04333)

MB & Connolly PRL 2019 See also: IceCube, Nature 2017

Using through-going muons instead

- ► Use ~10⁴ through-going muons
- Measured: dE_{μ}/dx
- ► Inferred: $E_{\mu} \approx dE_{\mu}/dx$
- From simulations (uncertain): most likely E_v given E_μ
- ► Fit the ratio $\sigma_{obs} / \sigma_{SM}$ 1.30 $^{+0.21}_{-0.19}$ (stat.) $^{+0.39}_{-0.43}$ (syst.)
- All events grouped in a single energy bin 6–980 TeV

Updated cross section measurement

- ► Uses 7.5 years of IceCube data
- Uses starting showers + tracks
 - Vs. starting showers only in Bustamante & Connolly 2017
 - ► *Vs.* throughoing muons in IceCube 2017
- Extends measurement to 10 PeV
- Still compatible with Standard Model predictions
- Higher energies? Work in progress by Valera & MB

Bonus: Measuring the inelasticity $\langle y \rangle$

► Inelasticity in CC v_{μ} interaction $v_{\mu} + N \rightarrow \mu + X$: $E_X = y E_{\nu}$ and $E_{\mu} = (1-y) E_{\nu} \Rightarrow y = (1 + E_{\mu}/E_X)^{-1}$

• The value of *y* follows a distribution $d\sigma/dy$

► In a HESE starting track: $E_x = E_{sh}$ (energy of shower) $E_\mu = E_{tr}$ (energy of track) $y = (1 + E_{tr}/E_{sh})^{-1}$

New IceCube analysis:

- ▶ 5 years of starting-track data (2650 tracks)
- Machine learning separates shower from track
- Different *y* distributions for v and \overline{v}

IceCube, PRD 2019

Bonus: Measuring the inelasticity $\langle y \rangle$

► Inelasticity in CC v_{μ} interaction $v_{\mu} + N \rightarrow \mu + X$: $E_X = y E_{\nu}$ and $E_{\mu} = (1-y) E_{\nu} \Rightarrow y = (1 + E_{\mu}/E_X)^{-1}$

The value of *y* follows a distribution $d\sigma/dy$

► In a HESE starting track: $E_X = E_{sh}$ (energy of shower) $E_\mu = E_{tr}$ (energy of track) $y = (1 + E_{tr}/E_{sh})^{-1}$

New IceCube analysis:

- ▶ 5 years of starting-track data (2650 tracks)
- Machine learning separates shower from track
- Different *y* distributions for v and \overline{v}

IceCube, PRD 2019

GRAND, Sci. China Phys. Mech. Astron. 2020 [1810.9994]

GRAND & POEMMA

Both sensitive to extensive air showers induced by Earth-skimming UHE v_{τ}

If they see 100 events from v_{τ} with initial energy of 10⁹ GeV (pre-attenuation):

IceCube-Gen2 Radio

Example 2: Secret neutrino interactions

MB, Másson, Valera, In prep.

vSI with the UHE transient flux

If this happens repeatedly, high-energy neutrinos disappear

So, if we see high-energy neutrinos, we can set an upper limit on the vSI strength Original idea by Kolb & Turner, using SN1987A (*PRD* 1987)

Mean free path of a v of energy *E*: $l_{int}(E) = [n_{C\nu B}\sigma_{\nu\nu}(E)]^{-1}$

Estimated optical depth if emitted by a source at a distance *L*: $\tau(E) = \frac{l_{int}(E)}{L}$

vSI with the UHE transient flux

If this happens repeatedly, high-energy neutrinos disappear

So, if we see high-energy neutrinos, we can set an upper limit on the vSI strength Original idea by Kolb & Turner, using SN1987A (*PRD* 1987)

Mean free path of a v of energy *E*: $l_{int}(E) = [n_{C\nu B}\sigma_{\nu\nu}(E)]^{-1}$

Estimated optical depth if emitted by a source at a distance *L*: $\tau(E) = \frac{l_{int}(E)}{L}$

vSI with the UHE transient flux

Mean free path of a v of energy *E*: $l_{int}(E) = [n_{C\nu B}\sigma_{\nu\nu}(E)]^{-1}$

Estimated optical depth if emitted by a source at a distance *L*: $\tau(E) = \frac{l_{int}(E)}{L}$

POEMMA Collab., JCAP 2021

POEMMA Collab., JCAP 2021

Example 4: Neutrino decay
Are neutrinos forever?

In the Standard Model (vSM), neutrinos are essentially stable (τ > 10³⁶ yr):
 One-photon decay (v_i → v_j + γ): τ > 10³⁶ (m_i/eV)⁻⁵ yr
 Two-photon decay (v_i → v_j + γ + γ): τ > 10⁵⁷ (m_i/eV)⁻⁹ yr
 Three-neutrino decay (v_i → v_i + v_k + v_k): τ > 10⁵⁵ (m_i/eV)⁻⁵ yr

► BSM decays may have significantly higher rates: $v_i \rightarrow v_j + \phi$

φ: Nambu-Goldstone boson of a broken symmetry (*e.g.*, Majoron)

We work in a model-independent way: the nature of φ is unimportant if it is invisible to neutrino detectors

Flavor content of neutrino mass eigenstates

Neutrinos propagate as an incoherent mix of v_1 , v_2 , v_3 —

Measuring the neutrino lifetime

Earth

Measuring the neutrino lifetime

Earth

Baerwald, **MB**, Winter, *JCAP* 2012

At 6.3 PeV, the Glashow resonance $(v_e + e \rightarrow W)$ should trigger showers in IceCube

- ... unless v₁, v₂ decay to v₃ en route to Earth (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth
- So we set *lower* limits on their lifetimes (in the inverted mass ordering)
- Translated into *upper* limits on coupling

At 6.3 PeV, the Glashow resonance $(\bar{v}_e + e \rightarrow W)$ should trigger showers in IceCube

- ... unless v₁, v₂ decay to v₃ en route to Earth (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth
- So we set *lower* limits on their lifetimes (in the inverted mass ordering)
- Translated into *upper* limits on coupling

At 6.3 PeV, the Glashow resonance $(\bar{v}_e + e \rightarrow W)$ should trigger showers in IceCube -

- ... unless v₁, v₂ decay to v₃ en route to Earth_
 (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth
- So we set *lower* limits on their lifetimes (in the inverted mass ordering)
- Translated into *upper* limits on coupling

► At 6.3 PeV, the Glashow resonance $(\bar{v}_e + e \rightarrow W)$ should trigger showers in IceCube

- ... unless v₁, v₂ decay to v₃ en route to Earth (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth

 So we set *lower* limits on their lifetimes -(in the inverted mass ordering)

Translated into *upper* limits on coupling

At 6.3 PeV, the Glashow resonance $(v_e + e \rightarrow W)$ should trigger showers in IceCube

- ... unless v₁, v₂ decay to v₃ en route to Earth (the surviving v₃ have little electron content)
- IceCube has seen 1 shower in the 4–8 PeV range, so v₁, v₂ must make it to Earth
- So we set *lower* limits on their lifetimes (in the inverted mass ordering)

► Translated into *upper* limits on coupling - $\mathcal{L} = g_{ij}\bar{\nu}_i\nu_j\phi + h_{ij}\bar{\nu}_j\gamma_5\nu_j\phi + h.c.$

Flavor composition

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Astrophysical sources

Earth

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth (
$$\alpha = e, \mu, \tau$$
):

$$f_{\alpha, \oplus} = \sum_{\beta = e, \mu, \tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta, S}$$
Standard oscillations
or
new physics

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

How knowing the mixing parameters better helps

For a future experiment ε = JUNO, DUNE, Hyper-K:

We combine experiments in a likelihood:

$$-2\log \mathcal{L}(\boldsymbol{\theta}) = \sum_{\varepsilon} \chi_{\varepsilon}^2(\boldsymbol{\vartheta})$$

Ingredient #1: Flavor ratios measured at Earth,

Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Song, Li, Argüelles, **MB**, Vincent, 2012.12893 **MB** & Ahlers, *PRL* 2019

Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Song, Li, Argüelles, **MB**, Vincent, 2012.12893 **MB** & Ahlers, *PRL* 2019

Ingredient #1: Flavor ratios measured at Earth, $(f_{e,\oplus}, f_{\mu,\oplus}, f_{\tau,\oplus})$ Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Posterior probability of $f_{\alpha,S}$ [MB & Ahlers, *PRL* 2019]:

$$\mathcal{P}(\boldsymbol{f}_s) = \int d\boldsymbol{\vartheta} \mathcal{L}(\boldsymbol{\vartheta}) \mathcal{P}_{\mathrm{exp}}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}},\boldsymbol{\vartheta}))$$

30

Ingredient #1: Flavor ratios measured at Earth, $(f_{e,\oplus}, f_{\mu,\oplus}, f_{\tau,\oplus})$ Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Posterior probability of $f_{\alpha,S}$ [MB & Ahlers, *PRL* 2019]:

$$\mathcal{P}(\boldsymbol{f}_{s}) = \int d\boldsymbol{\vartheta} \mathcal{L}(\boldsymbol{\vartheta}) \mathcal{P}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}},\boldsymbol{\vartheta}))$$

Oscillation experiments Neutrino telescopes

Ingredient #1: Flavor ratios measured at Earth, $(f_{e,\oplus}, f_{\mu,\oplus}, f_{\tau,\oplus})$ Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Posterior probability of $f_{\alpha,S}$ [MB & Ahlers, *PRL* 2019]:

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\to\alpha} f_{\beta,S}$$
$$\mathcal{P}(\boldsymbol{f}_s) = \int d\boldsymbol{\vartheta} \mathcal{L}(\boldsymbol{\vartheta}) \mathcal{P}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{S},\boldsymbol{\vartheta}))$$

Oscillation experiments Neutrino telescopes

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Note:

All plots shown are for normal neutrino mass ordering (NO); inverted ordering looks similar

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ)

Two limitations:

Allowed flavor regions overlap – Insufficient precision in the mixing parameters Will be overcome by 2030

Measurement of flavor ratios – Cannot distinguish between pion-decay and muon-damped benchmarks even at 68% C.R. (1σ) Will be overcome by 2040

Flavor at the Earth: *theoretically palatable regions*

Theoretically palatable flavor regions $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Flavor at the Earth: *theoretically palatable regions*

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Оr

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Flavor at the Earth: *theoretically palatable regions*

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian Ingredient #2:
Flavor at the Earth: *theoretically palatable regions*

Theoretically palatable flavor regions

= MB, Beacom, Winter, PRL 2015 Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Flavor at the Earth: *theoretically palatable regions*

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

0r

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, PRL 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

0.65

0.55

 $\sin^2 \theta_{23}$

0.60

2020: Use χ^2 profiles from 2.0 the NuFit 5.0 global fit 1.8 (solar + atmospheric 1.6 1.4 + reactor + accelerator) 1.2 Esteban *et al.*, *JHEP* 2020 $\delta_{\rm CP}/\pi$ www.nu-fit.org 1.0 0.8 0.6 0.4 0.2 NuFit 5.0 0.400.45 0.50

Flavor at the Earth: *theoretically palatable regions*

Theoretically palatable flavor regions

 $\equiv MB, Beacom, Winter, PRL 2015$ Allowed regions of flavor ratios at Earth derived from oscillations

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

Or

Explore all possible combinations

Note: The original palatable regions were frequentist [MB, Beacom, Winter, PRL 2015]; the new ones are Bayesian Ingredient #2: Probability density of mixing parameters ($\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$)

Note:

Note:

Note: All plots shown are for normal

neutrino mass ordering (NO); inverted ordering looks similar

Note:

Note:

Note:

We can compute the oscillation probability more precisely:

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\alpha} f_{\beta,\mathrm{S}}$$

So we can convert back and forth between source and Earth more precisely

For a future experiment ε = JUNO, DUNE, Hyper-K:

We combine experiments in a likelihood:

$$-2\log \mathcal{L}(\boldsymbol{\theta}) = \sum_{\varepsilon} \chi_{\varepsilon}^2(\boldsymbol{\vartheta})$$

2020

Allowed regions: overlapping Measurement: imprecise

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

2020

Allowed regions: overlapping Measurement: imprecise

Not ideal

2030

Allowed regions: well separated Measurement: improving

Nice

2020

2030

0.0

Fraction of v_e , $f_{e,\oplus}$

Allowed regions: overlapping Measurement: imprecise

Not ideal

Allowed regions: well separated Measurement: improving

Nice

2040

Allowed regions: well separated Measurement: precise

2020

2030

2040

Allowed regions: overlapping Measurement: imprecise

Not ideal

Allowed regions: well separated Measurement: improving

Nice

Allowed regions: well separated Measurement: precise

Success

Theoretically palatable regions: 2020 vs. 2040

By 2040:

Theory –

Mixing parameters known precisely: allowed flavor regions are *almost* points (already by 2030)

Measurement of flavor ratios – Can distinguish between similar predictions at 99.7% C.R. (3σ)

Can finally use the full power of flavor composition for astrophysics and neutrino physics

Song, Li, MB, Argüelles, Vincent, 2012.XXXXX

No unitarity? No problem

Energy dependence of the flavor composition?

Different neutrino production channels accessible at different energies –

TP13: py model, target photons from e⁻e⁺ annihilation [Hümmer+, Astropart. Phys. 2010]
Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]

Energy dependence of flavor ratios – in IceCube-Gen2 Measured:

Energy dependence of flavor ratios – in IceCube-Gen2 Measured: Inferred (at sources):

More than one production mechanism?

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

More than one production mechanism?

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

Can we detect the contribution of multiple v production mechanisms?

$$f_{\rm S} = k_{\pi} f_{\rm S}^{\pi} + k_{\mu} f_{\rm S}^{\mu} + k_{n} f_{\rm S}^{n}$$

$$\frac{\pi \text{ decay: } \mu \text{ damped: } n \text{ decay: } (1/3, 2/3, 0) \quad (0, 1, 0) \quad (1, 0, 0)$$
Propagate to Earth
$$f_{\oplus}$$

Assume real value $k_{\pi} = 1$ ($k_{\mu} = k_n = 0$)

By 2040, how well will we recover the real value? [Adding spectrum information (not shown) will likely help]

1.0

0.8

0.9

Song, Li, Argüelles, MB, Vincent, 2012.12893

1.0

Song, Li, Argüelles, MB, Vincent, 2012.12893

1.0

0.8 0.9

Side note: Improving flavor-tagging using *echoes*

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Detectors

Radio emission: geomagnetic and Askaryan Geomagnetic Askaryan

- Time-varying transverse current
- Linearly polarized parallel to Lorentz force
- Dominant in air showers

- ► Time-varying negative-charge ~20% excess
- Linearly polarized towards axis
- Sub-dominant in air showers

Radio emission: geomagnetic and Askaryan

Radio-detection of UHE neutrinos in ice

TAU AIR-SHOWER MOUNTAIN-BASED OBSERVATORY (TAMBO) · COLCA VALLEY, PERU

Detection of UHE v in ice and water

Optical detection	Radio detection	Radio detection
in ice or water	in ice	from the air or space
	ARA or ARIANNA or RNO-G o IceCube-Gen2 o	✓ ANITA → PUEO � NuMoon ✓

Detection of air showers from UHE v_{τ}

Surface particle detection	Radio detection in the atmosphere	Air-shower imaging from the ground	Cherenkov/fluorescence from air or space
	✓ANITA → PUEO BEACON GRAND TAROGE & TAROGE-M	Trinity 😥 MAGIC 🔗 CTA 😥 ASHRA NTA 🚱	EUSO-SPB2 🌜 POEMMA 🚯

Denton, MB, Wissel et al., Snowmass 20201 Letter of interest

🍄 Operating

Rodrigues, Heinze, Palladino, van Vliet, Winter, 2003.08392 Heinze, Fedynitch, Boncioli, Winter *ApJ*Fang & Murase, *Nature Phys.*POEMMA, 2012.07945 RNO-G, *JINST*IceCube-Gen2, *J. Phys. G*GRAND, *Sci. China Phys. Mech. Astron.*

Rodrigues, Heinze, Palladino, van Vliet, Winter, 2003.08392 Heinze, Fedynitch, Boncioli, Winter *ApJ*Fang & Murase, *Nature Phys.*POEMMA, 2012.07945 RNO-G, *JINST*IceCube-Gen2, *J. Phys. G*GRAND, *Sci. China Phys. Mech. Astron.*

UHE neutrinos: *transient sources*

UHE neutrinos: *transient sources*

UHE neutrinos: *transient sources*

Guépin, Kotera, Barausse, Fang, Murase, A&A 2018 Murase, PRD 2017 Zhang et al., Nature Commun. 2018 POEMMA, 2012.07945 RNO-G, JINST 2021 IceCube-Gen2, J. Phys. G 2021 GRAND, Sci. China Phys. Mech. Astron. 2020 ANTARES, IceCube, Auger, LIGO, Virgo, ApJ 2017

PLEnuM

Characterizing the diffuse power-law flux in PLEvM $E^2 \phi = \phi_{100 \,\mathrm{TeV}} \left(\frac{E}{100 \,\mathrm{TeV}}\right)^2$ 3×10^{-18} 10^{2} IceCube sr^{-1} Plenum ∎¹⁰¹ s^{-1} 2×10^{-18} $\phi_{100{ m TeV}}$ [GeV cm⁻² ∎10⁰ ∎10-1 10^{-18} 10^{-2} 10^{-3} 2.42.02.12.32.52.22.6

 γ

Discovering a Galactic v flux in PLEvM

Figure courtesy of Matthias Huber Huber, Schumacher, Agostini, **MB**, Oikonomou, Resconi, *In prep*.