

Luminosity Measurement at CMS

Workshop on high energy physics and related topics at Sonora, Mexico

Andrés G. Delannoy (UTK), on behalf of the BRIL Group

Luminosity at the LHC

- *Roughly speaking*, what is luminosity?
 - Average number of "interactions" when "bunches" of protons cross
 - At the LHC, groups of 100 billion protons collide as often as 25 million times per second
 - O(10-100) protons interact for each crossing ("pileup")
 - Quantifies the ability to produce a certain number of interactions
 - Proportionality factor between rate of interactions and the cross-section
 - "Instantaneous" luminosity aggregated into "integrated" luminosity
 - Amount of data produced in a certain period of time
- Why is it important?
 - Monitoring of accelerator performance
 - Optimization of beam parameters
 - Detector operation during data-taking
 - Instantaneous luminosity determines trigger "selectiveness"
 - Integrated luminosity needed for physics analyses
 - Yields expected frequency of each type of interaction
 - Particularly important for cross-section measurements

Luminosity measurement

- Recording and processing data from each luminometer
- Determination of the visible cross section: σ_{vis} (normalization)
- Measurement and correction for stability and linearity (integration)

First CMS Lumi publication (accepted by EPJ C):

Precision luminosity measurement in proton-proton collisions at \sqrt{s} = 13 TeV in 2015 and 2016 at CMS

Luminometers at CMS

- Dedicated luminometers: PLT, BCM1F
- CMS detectors used for lumi measurement: Pixel, HF, DT

CMS BRIL Project

- Beam Radiation, Instrumentation, and Luminosity
 - \circ Luminosity measurement, beam condition monitoring, radiation monitoring and simulation, etc

- Silicon pad detector dedicated to luminosity and background measurement
 - Installed in CMS in 2015 for LHC Run2 and rebuilt for LHC Run 3 data taking
 - New version implements CMS Phase-2 silicon sensor prototypes and active cooling
- Four C-shape PCBs arranged into two rings at each side of CMS
 - Six double-pad silicon sensors per C-shape
 - Located $z = \pm 1.8$ m from the interaction point and radius = ~6 cm
- Real-time histogramming with 6.25 ns per-bin allows separation of incoming machine-induced background (MIB) and collisions

Pixel Luminosity Telescope (PLT)

- Silicon pixel detector dedicated to luminosity measurement
 - \circ ~ Installed in CMS in 2015 for LHC Run2 and rebuilt for LHC Run 3 data taking
 - New version implements three CMS Phase-2 silicon sensor prototypes
- Arranged into 16 channels or "telescopes"
 - Three sensor planes per telescope
 - Same readout chips (ROCs) as CMS Phase-0 Pixel detector (PSI46v2)
 - 7.5 cm in length
- Triple-coincidences from "fast" readout (40 MHz): primary luminosity measurement
- Full pixel data (~3 kHz) used for track-reconstruction studies

PLT performance during Run 2

- [1] Accidentals
 - Fraction of "background" tracks vs SBIL
- [2] Efficiency
 - Fraction of tracks with a "missing" hit
- [3] Luminosity using track data
 - Can reduce contribution from accidentals
- [4] Depletion voltage
 - Minimum HV bias at which sensors are efficient

PLT performance during Run 2

- [5] Pulse Heights
 - Amount of charge deposited by particle traversing sensor
- [6] High-pileup performance
 - Linearity behavior of PLT vs HFOC at very high SBIL
- [7] Occupancy-based DQM
 - K-means ML to identify dead pixels, decoding errors, etc
- [8] Cross-detector linearity & stability uncertainty
 - Histogram ratio and slope distributions

BRIL LS2 Activity

- Production of new components
- Sensor production and characterization with Sr-90
- <u>Assembly and integration</u>
- Stress-testing under thermal cycles (PLT)
- Troubleshooting and repairs
- Transport, installation, and checkout

0

van der Meer (VdM) method

Determination of σ_{vis} (normalization)

Allows calibration of relative luminosity from beam parameters

2016 (13 TeV)

0.6

Fill 4954, fifth v scan, PCC + Data

CMS

Determination of σ_{vis} (normalization)

- Orbit drift corrections
 - Potential bias from beam positions monitors (DOROS, Arc BPM)
- Beam-beam effects
 - EM interaction (deflection) between colliding buches
- Length scale calibration
 - Δ (beam separation_{LHC magnets}, beam separation_{length scale})
- Transverse factorizability
 - Non-factorizability of X and Y components measured and corrected with the beam-image method
- Other corrections
 - beam current calibration and spurious charge 👻

Stability and linearity (integration)

- Rate corrections
 - Efficiency & Non-linearity
 - Reduced response, noise from radiation damage
 - Out-of-time pileup corrections
 - From electronics spillover and material activation ("afterglow")
- Linearity and Stability
 - Determined from comparisons between luminometers

Total 2015-2016 correction and uncertainty

- Normalization uncertainty
 - \circ Uncertainty in the absolute luminosity scale (σ_{vis}) determined from vdM scan procedure
 - Dominant: beam position monitoring, transverse factorizability, beam-beam effects
- Integration uncertainty
 - Uncertainty associated with σ_{vis} variations over time (stability) and pileup (linearity and out-of-time rate corrections) $\frac{1}{2015[\%]} \frac{2016[\%]}{2016[\%]} \frac{2016[\%]}{Corr}$

Course	Impact on $\sigma_{\rm vis}$ [%]		
Source	2015	2016	
Ghost and satellite charge	+0.2	+0.3	
Orbit drift	+0.6 - 1.0	+0.2-1.0	
Residual beam position corrections	+0.3-1.1	+0.2-0.9	
Beam-beam effects	+0.6	+0.4	
Length scale calibration	-0.4	-1.3	
Transverse factorizability	+0.8 - 1.3	+0.6	

Source	2015 [%]	2016 [%]	Corr				
Normalization uncertainty							
Bunch population							
Ghost and satellite charge	0.1	0.1	Yes				
Beam current normalization	0.2	0.2	Yes				
Beam position monitoring							
Orbit drift	0.2	0.1	No				
Residual differences	0.8	0.5	Yes				
Beam overlap description							
Beam-beam effects	0.5	0.5	Yes				
Length scale calibration	0.2	0.3	Yes				
Transverse factorizability	0.5	0.5	Yes				
Result consistency							
Other variations in $\sigma_{ m vis}$	0.5	0.2	No				
Integration uncertainty							
Out-of-time pileup corrections							
Type 1 corrections	0.3	0.3	Yes				
Type 2 corrections	0.1	0.3	Yes				
Detector performance							
Cross-detector stability	0.6	0.5	No				
Linearity	0.5	0.3	Yes				
Data acquisition							
CMS deadtime	0.5	< 0.1	No				
Total normalization uncertainty	1.2	1.0	—				
Total integration uncertainty	1.0	0.7	—				
Total uncertainty	1.6	1.2	_				

High-Luminosity LHC

- Will increase luminosity by a factor of ~10 beyond the LHC's design value
 - Large data sample size -> improves studies of rare processes
 - 12 T quadrupole magnets to focus beams at IPs
 - Crab cavities to optimize crossing angle at IPs
- Upgrade of CMS detector systems
 - Colossal amount of ongoing work to update systems able to operate at HL-LHC conditions
 - Replacement of Pixel and Tracker
 - Replacement of End-Cap Calorimeter (HGCAL)
 - Precision Timing detectors (30 ps resolution)
 - Overhaul of the Trigger and DAQ systems
 - Event rate: 100 kHz -> 750 kHz
 - Permanent storage: 1 kHz -> 7.5 kHz

- Large contribution from luminosity uncertainty in precision SM measurements
 - ≈1% lumi uncertainty required to become comparable to other experimental uncertainties
- Target: redundant and diverse detectors with excellent linearity and stability
 - Tracker Endcap Pixel Detector (TEPX) Disk 4 Ring 1 (D4R1)
 - Fast Beam Conditions Monitor (FBCM)
 - \circ $\,$ Muon barrel detector and 40 MHz scouting

Summary

- Luminosity measurement and calibration is very involved and important for the collaboration
- It requires multiple redundant and robust (ideally dedicated) lumi detectors
- The van der Meer scan method is crucial
 - Determine the overall normalization and systematic uncertainties associated with integrated luminosity
- The HL-LHC presents challenging conditions for new lumi detectors and lumi measurement techniques
- It is also a very friendly group. Get involved! :)

References/Info

- <u>CMS website: Illuminating! Counting LHC collisions with CMS</u>
- CMS website: The installation of the BRIL luminometers: Preparing for bright Run 3
- LPC: General information about luminosity calibration at the LHC
- Precision luminosity measurement in proton-proton collisions at \sqrt{s} = 13 TeV in 2015 and 2016 at CMS
- <u>The Phase-2 Upgrade of the CMS Beam Radiation, Instrumentation, and</u> <u>Luminosity Detectors: Conceptual Design</u>

BRIL

Proposed CMS Lumi Systems for HL-LHC

- Diverse detector technologies and counting methods, orthogonal systematics, redundancy!
- Already in use during Run 2:
 - Hadron Forward (HF) calorimeter (3.15 < |eta| < 3.5)
 - 2 algorithms for luminosity measurement:
 - Tower Occupancy (HFOC)
 - Transverse Energy sum (HFET)
 - Radiation and Environment Monitoring Unified Supervision (REMUS) monitors
 - Radiation Monitoring System for the Environment and Safety (RAMSES) subsystem used for luminosity systematics

	Available outside stable beams	Independent of TCDS	Independent of foreseeable central DAQ downtimes	Offline luminosity available at LS frequency (bunch-by-bunch)	Statistical uncertainty in physics per LS (bunch-by-bunch)	Online luminosity available at ~1s frequency (bunch-by-bunch)	Statistical uncertainty in vdM scans for ovis (bunch-by-bunch)	Stability and linearity tracked with emittance scans (bunch-by-bunch)		
FBCM hits on pads	~	~	~	~	0.037%	~	0.18%	\checkmark	inc	dependent of any Intral CMS service
D4R1 clusters (+coincidences)	\checkmark	\checkmark	\checkmark	\checkmark	0.021%	\checkmark	0.07%	\checkmark	- at	at least one of them shall be available 100% of the time
HFET [sum ET] (+HFOC [towers hit])	✓	if configured	if configured	\checkmark	0.017%	~	0.23%	\checkmark	luminometers of	
TEPX clusters (+coincidences)	if qualified beam optics	×	if configured	\checkmark	0.020%	~	0.03%	~		
OT L6 track stubs	not anticipated	×	if configured	~	0.006%	~	0.03%	~		
MB trigger primitives via back end	~	×	×	~	0.25%	~	1.2%	\checkmark		
40 MHz scouting BMTF muon	\checkmark	×	×	~	0.96%	\checkmark	4.7%	~	measurements	
REMUS ambient dose equivalent rate	~	~	~	orbit integrated	orbit integrated	orbit integrated	orbit integrated	orbit integrated		

Tracker Endcap Pixel Detector (TEPX)

- TEPX 63 < r < 255 mm, 175 < |z| < 265 cm
 - D4R1 lies beyond $|\eta| = 4$
- 800 M pixels over an area of 2 m²
- Designed for $10^3 \text{ kHz} \rightarrow \text{low occupancy}$
- TEPX luminosity
 - real time Pixel Cluster Counting on FPGA
 - dedicated unbiased trigger (75 kHz)
 - module geometry allows coincidence measurement
 - handle for calibration and systematics

r [mm]

2021-08-18

Disk 4 Ring 1 (D4R1)

- D4R1 operated exclusively by BRIL
- Higher trigger rate (750+75 kHz) and smaller surface (190 mm²)
 - Similar performance as TEPX
- Beam-induced background measurement
 - Needs at least 30 empty bunch crossings to decrease albedo and out-of-time particle contribution
 - Only the first bunch in a train or unpaired bunches

delannoy@cern.ch

Fast Beam Conditions Monitor (FBCM)

- Proposal to locate close to bulkhead (behind disk 4 of TEPX)
 - 8 < r < 30 cm, 277 < |z| < 290 cm
- 4 quarters, 84 silicon-pad (expect 300um, 2.89 mm²) sensors/quarter
- Luminosity measurement using zero-counting algorithm
- BIB measurement exploiting info of the time-of-arrival (ToA) and time-over-threshold (ToT) of hits with a sub-ns resolution at the rate of 40 MHz

