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ARTIFICIAL INTELLIGENCE

Programs with the ability to
learn and reason like humans

MACHINE LEARNING
Algorithms with the ability to learn

without being explicitly programmed W h a t | S
Al/ML/DL?




DL development in time

Deep Neural Network

(Pretraining)
Multi-layered m .

Perceptron
ADALINE ol : 4
Problem (Backpropagation)
A A
A
Perceptron
| Golden Age R Dark Age (“Al Winter”) N
Electronic Brain
1943 1957 1960 1969 1986 1995 2006

TR "

S. McCulloch - W. Pitts F.Rosenblatt ~ B. Widrow - M. Hoff M. Minsky - S. Papert D. Rumelhart - G. Hinton - R. Wiliams V. Vapnik - C. Cortes G. Hinton - S. Ruslan
X AND Y XORY NOT X Foward Activity ——pp» N . 2 ;. 5 . >
®| 0 ®0 = 1 o 2, o o e i
‘ '.-""' ‘ ‘..._.. = ; : ) o . - — L -~
+1 o+ -2 #1040 1 R : 2 : s .
/ l \ x/ |Y \* | . . O . <@—— Backward Error &7
« Adjustable Weights » Learnable Weights and Threshold * XOR Problem + Solution to nonlinearly separable problems  + Limitations of learning prior knowledge * Hierarchical feature Learning
» Big computation, local optima and overfitting * Kernel function: Human Intervention

* Weights are not Learned



What is the connection
between big data and
Deep learning

* Deep learning needs large datasets
to train their neural networks

 HEP experiments produce large
amounts of data each year

e Several task can be improved using
DL, for instance classification of
data, classifications of images,
anomaly detection, etc..

Data Mining

Data Science

Artificial Intelligence

Machine Learning

¥
X

Big Data
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Large Hadron Collider (LHC)

Level-1 Rate [Hz]

10°

104

10°

107

©

High Level-1 Trigger
(1 MHz)

LHCb High No. Channels
High Bandwidth
( 1000 Gbit/s)

ATLAS

ok
HERA-B

Q

CDF Il
DO Il

O BaBar High Data Archives
%CDF. DO (PetaBytes)
. Qo
ZEUS ALICE

UA1 O ONA49

10° 100 107
O Lep
Event Size [Bytes]



The Large Hadron Collider: A big data experiment

Data recorded on tapes at CERN on a monthly basisin TB

LHC Run 1 LHC Long Shutdown LHC Ru

15000
16000

& AFS l
14000 @ LHC Experiments '
s000

Back-up || | lI
I !
- ‘ lllr I Ill'. h
: ]
” .IMI'IL:“Il“I'ﬂIIl l ulhln...lmllmllmmlu | " i':!li Il

@ Other experiments
2010 2011 2012 2013 2014 2015 2016 2017 2018

12000
® Users

10000

3000

This plot shows the amount of data recorded on tape generated by the LHC experiments, the
other experiments, various back-ups and users. In 2018, over 115 petabytes of data in total
(including about 88 petabytes of LHC data) were recorded on tape, with a record peak of
15.8 petabytes in November.
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Where can DL be applied in HEP?

Particle reconstruction Simulation Anomaly detection
(Data guality monitoring)

Cluster_onTrack Positions Cluster_onTrack Positions

Signal/bkg separation
(fﬂine)




Where is the data
coming from?

80 million electronic channels
10 petabytes/s of information
~1000 Mb/s raw data to tape
50 Pb of data per year writing to tape
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Gluon initiated jet

ATLAS Simulation Preliminary
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ALICE is the dedicated heavy-ion experiment

at the LHC

Study of the Quark Gluon Plasma (QGP)

Jet in-medium
bremsstrahlung  jet-plasma

t photons
prompt photon. Wz

collision ¥

overlap zone

pre-equilibrium
photons )
thermal radiation

1/N dN/dx

* Due to the short lifetime of the A_ baryons and
statistical limitation the reconstruction was

particularly challenging

* BDT were used to separate background from signal

JHEP 1804 (2018) 108
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Simulations in HEP

= CMS
__ MC17 - 15 B events

Derivations

The majority of CPU cycles is spent in Monte Carlo production

For the past few years Monte Carlo simulations have
represented more than 50% of the WLCG (LHC
computing grid) workload

Production of Monte Carlo simulation
samples is a crucial task in HEP
experiments

Detailed simulation is needed to optimize
the events selection for SM searches and
new physics searches

To measure the performance of new
detector technologies

Usually, samples with large statistic are
needed in order to reduce the analysis
uncertainties

A lot of resources (computational, human)
are needed to fulfill the requirements of
the entire experimental collaborations

13



GANSs for fast simulation

Generative Adversarial
Network

Real
Samples

_F@_

Latent
Space

5

(—_— G
Generator Generated
Fake
x Samples

Fine Tune Training

A 1sD
. Correct?

H :
B B S B B G T S e S B B S s /

Noise
po(data) Data distribution
Model distribution
Fa N

Al
o\

AL 7 IR

Poorly fit model After updating D  After updating G

W/I\N

Mixed strategy
equilibrium

e Generative Adversarial Networks (GANs) are a
type of deep neural networks with an architecture
comprised of two nets, pitting one against the
other (“adversarial”)

* One neural network called “generator” generate
new data instances, while the other
“discriminator” evaluates the authenticity
comparing with the training data

* The goal is that the generator is trained in a way
that the discriminator will not identify if the
information received is not the truth one

Introduced by lan Goodfellow in 2014, Referring as
the “most interesting idea in the last 10 years of ML”
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CaloGAN: a calorimetry fast simulation

e Asimulation of the calorimeter using GANs (CaloGAN)

* From a series of simulated showers, the CaloGAN is tasked with learning from the simulated data

distribution for gammas, e+ and pi+

* The training dataset is represented in image format by three figures of dimensions 3x96, 12x12 and

12x6, each representing the shower energy depositions

Average gamma Geant4 shower from Geant4 (top) Shower shape variables for e+, gamma and
pi+, comparison Geant4 and CaloGAN

and CaloGAN (bottom)

10!

% T
Emsergy (Med)

10%
101
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Energy IMev]

107

10~

e GEANT [ e* QAN

¥ GEANT =y Gas

nT GEANT rt GAM
10-4 10! 10* 10°

E, (GeV)

Phys. Rev. D 97,
014021 (2018)
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Calorimeter FastSim in LHCb

Showers generated with Geant4 (top) and showers
simulated with GANs (bottom)
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* New Deep Learning framework based on GANs

e Faster than traditional simulated methods by 5 orders
of magnitude

* Reasonable accuracy

e This approach could allow physicist to produce enough
simulated data needed during the HL-LHC
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Data Quality monitoring

Data quality monitoring is a crucial task for every large-scale High-
Energy Physics experiment

The system still relies on the evaluation of experts

An automated system can save resources and improve the quality of the
collected data

A detector measures physical properties of proton collisions products
When a subdetector exposes abnormal behavior, it is reflected in

measured or reconstructed properties

17



Data Quality monitoring

 The primary goal of the system is to assist the Data Quality managers by filtering most
obvious cases, both positive and negative

* The system objective is minimization of the fraction of data samples passed for the human
evaluation (i.e. the rejection rate)

 The Evaluation of the algorithm was done using CMS experimental data published in the
CERN open data portal
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1 kHz

Offllne

100 kHz

1ns 1 Us 1 ms 1s

e L1 trigger decision (hardware, FPGA based) to be done

in 4 microsec
* Could a ML model be fast enough to make a decision in

such short time window?

* Reprogrammable fabric of logic

cells embedded with DSPs,
BRAMs, high speed, 10

* Low power consumption
compared to CPU/GPU

* Massively parallel 19



ML interface for FPGAs

* Regular neural network model
trained in CPU/GPU

Keras

< * Model loaded in firmware via

- hls 4 | Corprocessing kemel the hlsdml interface

S m
CPUFPGA] o Decision made in the FPGA

compressed

model HLS. —

torenIon Custom firmware
Usual ML 7 design https://arxiv.org/abs/1804.06913

software workflow

tune configuration
precision
reuse/pipeline
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FPGASs for Phase-2 ATLAS Muon barrel

e ATLAS Level-0 muon trigger will face a From strip maps to images

complete upgrade for HL-LHC L I
* New trigger processor ' /
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GPU resources at CERN

Graphical Processing Units (GPUs) are fundamental for the
training of models in machine learning

With GPUs the training time can be reduced several orders
of magnitude with respect to normal CPU

HEP workloads can benefit from from massive parallelism
Current challenges as the TrackML motivates CERN to
consider GPU provisioning in the OpenStack cloud

CPUvs. GPU
2000

1800 +

1800 +

1400 +

1200 + 4
; 1000 + -
800 + —

800 +

400

o -
o : | - a —
8412002 11142004 5282006 10102006 212252008 T/E2008

Time +— GFLOPS CPU = GFLOPS GPU

GPUs can be accessible via virtual machines
The user can access normal CUDA applications
as tensorflow

The resources are so far quite limited but is
intended to grow in the coming years

/~ ™\ /7
GPU Pass-through vGPU

VIRTUAL
MACHINE

Guest 0S5

VIRTUAL

-
KVM host

_ Vendor Driver
VFIO_PCI :

KVYM host

I'MA remapper
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New CERN IT monitoring infrastructure

Critical for CC operations and WLCG

Data Storage & Data
Sources Transport Search Access

& ’E:L';:.;:.':::“i’T In

Data enrichment
Data aggregation
Batch Processing

_ .‘Sf:’crr‘lr(\I -
o + Data now 200 GB/day, 200M events/day
« At scale 500 GB/day

+ Proved effective in several occasions

.....

Processing

The ATLAS event index
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Events | Data Analytics Web Rvant
mm l enrichment ul HMHL.T" e
! i <N S I

£
2,
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I
= ! Hadoop RDBMS

Clients

Scientists

Meta-data service

Swan services . _
* Fully integrated with

Sparks and Hadoop
at CERN

* Modern, powerful
and scalable
platform for data
analysis
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Medical physics applications connected with DL and HEP

Development of novel acceleration technologies Development of simulation for testing new
for cancer treatment installation, with DL prototypes in medical physics (toroida magnet
implementations similar to the LHC to focus the beam during radiation treatment)

\ ¢
\  treatment
room1

tréatment
room 2
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Pneumonia Detection using Convolutional Neural Network (CNN)

Dense
Flatten
r : \\\ sigmoid
Conv2D — s | _.'i i"."
298x298, f=16 MaxPool : Conv2D — - B /
149x149x16 147x147, 1=32 MaxPool]
73x73x31 ’
L o) L ) - J
Input Shape: | i ¢ &
300x300 First Layer Second Layer Flatten + Dense
512 neurons +
sigmoid

* One of the most successful ways to implement DL in
medical physics is with image analysis

Commonly medical images are (visually) analyzed by
medical specialist

Anomaly detection
using Convolutional ingnosie and aee eatment 1 o2 1OTE

* Introducing a reliable model in DL has the potential
n e U ra | n etWO r kS to producegan early diagnostic and start thg
treatment




Conclusions and Perspectives

ML and Bigdata development are (and will be) relevant for the development in different
areas including HEP and medical physics
* There need to be a better communication and related projects between physicist, data
scientists, computer and electronics engineers to develop multidisciplinary projects to
advance not only fundamental science but also applied science with social impact
* Currently we have the pieces to start this projects
* Academic programs (physics, medical physics, data science, engineering)
* |nstallations (labs, computing)
* Big projects to power such developments (CERN experiments)

26



Backup
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Multilayer neural network

Hidden Output
layers layer
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CERN openlab initiative

* Most of the new developments on big data and ML tools are now carried by the
CERN openlab initiative

e CERN openlab is a public-private partnership that works to accelerate the
development of cutting-edge ICT solutions for the worldwide LHC community

* Some of the ongoing projects are:

Oracle cloud
REST services, Javascript, and JVM performance

. . . .

Quantum computing for hlgh-energy physms - '. CE RN
High-throughput computing collaboration 0-0

Code modernization: fast simulation o I b
Intel big-data analytics ope n a
Oracle big-data analytics

Yandex data popularity and anomaly detection
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