Heavy ion collisions at LHC (with focus on CMS results)

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11:22:07 CEST) Run / Event: 150431 / 541464

G. K. Krintiras (cern.ch/gkrintir)

Evian "debut" (**1992**)

- The infrastructure for *a* Large Hadron Collider (LHC), if any, would be driven by
 - ☑ the existed tunnel (radius and size) and its injectors: "Multipacket" collider + 10 T magnets
 - **Expressions of Interest** in 1992: LHC to handle proton and lead ions

Surpassing the baseline luminosity goals

- **Z** LHC collided more types of beam, than originally foreseen, with better performance
 - In practice, we've come close to the "HL-LHC" performance with PbPb and pPb collisions
 - In 2018 the peak luminosity at IP1/5 reached ×6 the design without magnet quenches
- Opens up further opportunities for high-density QCD studies
 - For probes **not accessible** so far due to lower luminosity or energy
 - All 4 experiments participate \rightarrow complementary phase space regions, cross checks

CMS Integrated Luminosity Delivered, PbPb+pPb

Searches for high-density QCD phenomena

- Look at "elementary" pp and pA collisions
 - Measure an observable, e.g., p_T -dependent ϕ correlations ("soft"), jet production ("hard"), etc
- ☑ Look at heavy ion (AA) collisions
 - Measure the very same observable as in pp, pA collisions
- Compare them: Is there something new, e.g., **modified** particle production in the bulk/within jets?

But why QCD is called the strong interaction?

Physics Today 53 (2000) 8

- Hard scattering cross sections calculable
 - **provided** the scale μ is chosen large
- Does the large-distance behavior of QCD
 - a transition region where "color" degrees of freedom dominate?
 - I.e., a **deconfinement** phase exists?

quark

g

antiquark

QGP: the form that the early Universe existed in

- Energy of partons is lost ('quenched') in QGP
 - experimentally seen as **R**_{AA} modifications
- Different mechnasims for hadron formation
 - p_T -dependent ϕ correlations

A fluid that retains its QCD asymptotic freedom character!

Throwing a bullet through an apple... Why?

- **a** To probe **cold** QCD matter
 - Collisions of unequal species (proton-lead) @ LHC revealed surprises
 - signs reminiscent of a quark-gluon plasma (QGP)
 - interest exploded (the 5th most cited CMS paper in PLB!)

Throwing a bullet through an apple... Why?

- **a** To probe **cold** QCD matter
 - Collisions of unequal species (proton-lead) @ LHC revealed surprises
 - signs reminiscent of a quark-gluon plasma (QGP)
 - interest exploded (the 5th most cited CMS paper in PLB!)

Studies with heavy ion collisions @ LHC

- Toolbox (not exhaustive) to infer from heavy ion and their "reference" collisions: 7
 - Hard probes and photon-induced processes
 - Nuclear PDFs, gluon saturation, BSM physics, etc.
 - Jet modifications
 - In-medium parton energy loss and medium response
 - Heavy quark dynamics
 - Hadronization and long-range correlations
 - New probes
 - accessible with high-luminosity data samples

 $(3\sigma_{\star}, 3\sigma_{\star}, 5\sigma_{t})$ envelope for $\epsilon_{\star}=5.52358 \times 10$

⁰m. σ₀=0.0001137

m_e.=5.52358 x 10⁻¹

Studies with heavy ion collisions @ LHC 10

- **Extended** experimental toolbox to infer from heavy ion and their "reference" collisions:
 - Hard probes and photon-induced processes
 - Jet modifications
 - Heavy quark dynamics
 - New probes

Dijet event (pPb)

Key characteristics of the nPDF global fits

With input from Annu. Rev. Nucl. Part. Sci. 70 (2020)

Nuclear (most recent) PDFs	nCTEQ15	EPPS16	nNNPDF 2 .0 (1 .0)	TUJU19
Perturbative order	NLO	NLO	NLO, NNLO	NLO, NNLO
Heavy quark scheme	ACOT	S-ACOT	FONLL	ZM-VFN
Value of $\alpha_s(m_Z)$	0.118	0.118	0.118	0.118
Input scale Q_0	$1.30~{\rm GeV}$	$1.30 {\rm GeV}$	$1.00 { m ~GeV}$	$1.69~{\rm GeV}$
Data points	708	1811	1467 (451)	2336
Fixed Target DIS	\checkmark	\checkmark	\checkmark (w/o ν -DIS)	\checkmark
Fixed Target DY	\checkmark	\checkmark		
LHC DY and W		\checkmark	$\checkmark(X)$	
Jet and had. prod.	$(\pi^0 \text{ only})$	$(\pi^0, LHC dijet)$		
Independent PDFs	6	6	3	6
Parametrisation	simple pol.	simple pol.	neural network	simple pol.
Free parameters	16	20	256 (178)	16
Statistical treatment	Hessian	Hessian	Monte Carlo	Hessian
Tolerance	$\Delta\chi^2 = 35$	$\Delta\chi^2 = 52$	—	$\Delta\chi^2 = 50$

nPDFs from several groups

- less available data sets compared to the free-nucleon cases
- different data sets (e.g., pPb LHC data), theoretical assumptions, and methodological settings
- not well understood aspects, e.g., the nuclear modifications of the gluon distribution

Nuclear gluon PDFs: constraints scarce so far **12**

- Stringent constraints with CMS dijet events
- **Data consistent with NLO pQCD predictions with nuclear PDFs (EPPS16)**
 - Enhanced **suppression** at forward y
- Significant reduction in EPPS16 uncertainties after reweighting

Phys. Rev. Lett. **121** (2018) 062002 EPJC **79** (2019) 511

Nuclear gluon PDFs: constraints scarce so far 13

- Stringent constraints with CMS dijet events
- Data consistent with NLO pQCD predictions with nuclear PDFs (EPPS16)
 - Enhanced suppression at forward y
- Significant reduction in EPPS16 uncertainties after reweighting
 - Complimentary constraints using **W bosons** and **top quarks**

Exclusive vector meson photoproduction in pPb14

- **I** Idea: Imaging proton using ions as a **photon source**
 - Probe gluon distributions at low $x \approx (M_{VM}/W_{\gamma p})$
- $\rho(770) \rightarrow \pi^+\pi^-$ exclusive UPC events consistent with those at HERA ^{a)}
 - indeed ions act as a source of quasi-real photons
- Using $\Upsilon(1S)$ differentially in y, p_T and as a function of $W_{\gamma p}$ to test
 - various models of the low-*x* gluon behavior

Light-by-light scattering

- **2** Challenging to measure owing to a tiny cross section of $\boldsymbol{O}(\alpha^4)$
- **Optimized** EGM reconstruction for $E_T < 10$ GeV
 - Measured with significance at 4σ level
 - Good candidate to perform **combined** LHC measurements
- Limits on coupling of axion-like particles to photons (or hypercharge)
 - **Best** exclusion limits over m_a = 5–50 (5–10) GeV

Studies with heavy ion collisions @ CMS

- **Extended** experimental toolbox to infer from heavy ion and their 'reference' collisions:
 - Hard probes and photon-induced processes
 - Jet modifications
 - Heavy quark dynamics
 - New probes

Back-to-back dijet (PbPb)

 γ +jet (PbPb)

16

Jet quenching

- **I** Jets are tomographic probes of the QGP
- **We characteristically measure**
 - Changes in the dijet p_T balance for the most central (head-on collision) events
 - Reshuffling of energy in and out of jet cone in PbPb compared to pp events

Nuclear modification factor (R_{AA}) of hadrons 18

- Energy of partons is lost ('quenched') in QGP 7
 - Experimentally seen as R_{AA} modifications
 - increases for $p_T > 10$ GeV; independent of flavor
- Significantly better precision with HL-LHC 7

Jet R_{AA}: the first large radius scan

CMS PbPb 404 μb⁻¹, pp 27.4 pb⁻¹ 0-10% $300 < p_{\tau}^{jet} < 400 \text{ GeV}$ $400 < p_{_{T}}^{^{jet}} < 500 \; GeV$ 1.5 Up to R = 1.0(!)7 New phase space $\mathbf{R}_{AA}^{R} / \mathbf{R}_{AA}^{R=0.2}$ Competing effects for wide jets 7 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Constraints on models $500 < p_{\tau}^{jet} < 1000 \text{ GeV}$ anti-k_T, $|\eta_{_{iet}}| < 2$ 1.5 JHEP 05 (2021) 284 CMS 0-10% PYQUEN PYQUEN w/ wide angle rad **JEWEL** 0.5 JEWEL w/o recoil 0.6 0.8 0.6 0.8 0.4 0.4 .2 0 Jet R

Jet shapes and fragmentation with γ +jet events²⁰

- Initial parton energy better constrained by γ p_T (quark-enriched jets) \mathbf{Z}
 - Jet shape
 - Jets are wider in PbPb than pp
 - Jet fragmentation function

CMS

Data

LBT

Supplementary

0.1

3

2

()

 $\rho(r)_{PbPb} / \rho(r)_{pp}$

Indication of medium-induced modifications

Phys. Rev. Lett. 122 (2019) 152001

Jet quenching in smaller systems?

- Crucial to understand the minimum requirement(s) for jet quenching
 - Final state effect in high multiplicity pPb
 - No suppression observed in pPb collisions for p_T > 2 GeV
 - Use smaller ions
 - Charged particle R_{AA} simply scales with initial 'geometry' (N_{part})

Studies with heavy ion collisions @ CMS

- **Extended** experimental toolbox to infer from heavy ion and their 'reference' collisions:
 - Hard probes and photon-induced processes
 - Jet modifications
 - Heavy quark dynamics
 - New probes

Fourier expansion of the projected $\Delta \varphi$

22

Azimuthal correlations of particle pairs are decomposed via a Fourier expansion:

$$\frac{1}{N_{\rm trig}}\frac{dN^{\rm pair}}{d\Delta\phi} = \frac{N_{assoc}}{2\pi} \left[1 + \sum_{n} 2V_{n\Delta}cos(n\Delta\phi)\right]$$

- single-particle azimuthal anisotropy Fourier coefficients measured as $v_{n\geq 1}=\sqrt{v_{n\Delta}}$
- **a** Harmonics (e.g., v_2 , v_3) can be interpreted as **flow** (e.g., elliptic, triangular) that are related to

Measuring collectivity in small systems

24

- **D**etailed measurements of $v_2 \& v_3$
 - centrality/event activity and p_T dependence qualitatively similar to that in heavy ions
 - identified particle and multiparticle correlation techniques support a collective origin of v_n
 - encompased by hydrodynamical models, but **not a unique** description
- $\fbox{\sc line 1}$ We start answering whether a collective component in v_n exists by studying
 - the role of the **initial conditions**
 - the impact of **hard-scattering** processes and **energy loss**

Understanding collectivity in small systems 25

- **Process-dependent** v_n can distinguish complementary particle production mechanisms
 - **v**_{2,3} similarity (ordering) in MB vs jet-triggered pPb events indicative of flow (soft+hard admixture)
 - v_{2-4} largely independent of whether measured in jet enriched/depleted pp events [7]
- Photonuclear collisions in UPC offer an alternative dynamics of small systems
 - competing explanations can be tested in cases one of the "beams" has a **simpler** initial state
 - both ATLAS and CMS see significant v_2 in UPC PbPb [8] and pPb collisions, respectively

Measuring HF particle flow in pPb

Observation of c flow

- the number-of-constituent-quark (n_q) scaling holds for $KE_T/n_q < 1$ GeV
- model with final-state interactions underestimates the v_2 signal
- **First measurements of b flow**
 - \bullet $\,$ indication of flavor hierarchy between light, charm, and beauty at low $p_{\rm T}$
 - qualitative agreement with CGC calculations and data \rightarrow an important role for initial-state effects?

Quarkonia: Upsilon family in PbPb

- Flow of bottomonia in PbPb
 - Precise $\Upsilon(1S)$ v₂ consistent with 0
 - First $\Upsilon(2S)$ v₂ measurement consistent with 0 too
 - in contrast to larger $J/\psi v_2$
- \blacksquare Sequential suppression of Υ family
 - stronger in PbPb than pPb

Phys. Lett. B **790** (2019) 270

Comparing HF particle flow in all systems

28

- **There is charm anisotropy... everywhere**
 - apparent ordering: v_2 (PbPb) > v_2 (pPb) > v_2 (pp)
 - so system size should play a role?
- **Z** For open bottom hadrons: $v_2 (PbPb) > 0$ but $v_2 (pPb) \sim v_2 (pp) \sim 0$
 - do we hit some **threshold** between charm and beauty processes?

Studies with heavy ion collisions @ CMS

- **Extended** experimental toolbox to infer from heavy ion and their 'reference' collisions:
 - Hard probes and photon-induced processes
 - Jet modifications
 - Heavy quark dynamics
 - New probes

$t\bar{t} \rightarrow W(\mu\nu_{\mu})bW(e\nu_{e})b$ (pPb)

 $t\bar{t} \rightarrow W(\mu\nu_{\mu})bW(e\nu_{e})b$ (PbPb)

Evidence of X (3872) production in PbPb

- ☑ X(3872) (or $\chi_{c1}(3872)$): Observed by BELLE (2003), its internal structure is still under debate μ^+
 - extended, compact four-quark or mixed molecule-charmonium state?
 - Production in QGP probes its structure, e.g., coalescence models
- **a** Measured with significance at 4σ level
 - X(3872) to $\psi(2S)$ ratio enhancement in PbPb?

2102.13048 (submitted to Phys. Rev. Lett.)

J/ψ

Primary Vertex

Evidence of tt cross section in PbPb

, q

v. \overline{a}

b

- **First** experimental evidence (4σ level) of the top quark in **nucleus-nucleus** collisions
 - using leptons only and leptons+b jets
- It establishes a **new tool** for probing nPDFs as well as the QGP properties

Future physics opportunities with W and Z bosons and top quarks for high-density QCD at LHC <u>arXiv: 1812.06772</u>

HL-LHC operational scenarios for pPb and PbPb33

☑ Included in the YR and recently refined (CERN-ACC-2020-0011)

- scenarios are based on **benchmarked** models (actually agree remarkaly well with Run 2 LHC
- ≈five one-month runs would be needed to reach 13 /nb of PbPb
- **«two** one-month runs would be needed to reach 1.2 /pb of pPb
- projections could be improved, e.g., due to operational efficiency (>50%), etc

Prospects for top quark production at pA HL-LHC 34

- **a** The y of the decay leptons sensitive probe of the nuclear gluon density
 - **comparable** experimental and nPDF uncertainty with the pPb data set in Runs 3–4
 - depending on the expected systematic error and bin-by-bin correlations
 - to showcase **another potential**: In a pAr mode, the higher \sqrt{s} + lumonsity \rightarrow increased t \bar{t} yield

Prospects for top quark production at AA HL-LHC 35

nPDF uncertainties increase at large x due to the **lack** of direct constraints

- the region where the predictions for R_g also **differ** between nPDF determinations
- some constraints from the current LHC dijet measurements (cf. backup)

Probing the "final state": the yoctosec QGP lifetime

- **Probes for jet quenching, e.g., dijets,** Z/y+jet, are produced **simultaneously** with the collision
- **a** Top decay products have the potential to **resolve** the QGP evolution instead

Probing the "final state": the yoctosec QGP lifetime

- **2** Probes for jet quenching, e.g., dijets, Z/γ +jet, are produced **simultaneously** with the collision
- **Top decay products have the potential to resolve the QGP evolution instead**
 - Leptonic & hadronic branches as "tag" & "probe"
 - qq' start interacting with the medium at **later** times
 - top p_T acts as the "trigger" on the onset of the interaction

W mass vs top $p_{\scriptscriptstyle T}$ and QGP lifetime reach

- What would be the observable to measure the amount of energy loss?
 - By reconstructing **W** mass vs top p_T we can trace the quenching time dependence
 - At HL-LHC, possible to distinguish low-duration scenarios (inclusively)
 - At FCC, possible to assess the QGP density evolution (i.e., 'triggering on' top p_T)

Prospects for W boson forward-to-backward ratios 39

- Exploit the larger (× 10) pPb data set in Runs 3–4
 - experimental uncertainties significantly **smaller** than the nPDF ones
 - to showcase the potential: significant reduction of the uncertainties in the gluon nPDF
 - the large-x (> 0.1) part is **not affected** though

Physics motivations for collisions with lighter ions

1 month of ArAr > PbPb data set in Runs 3-4

• coverage of a much broader range in $Z p_T \rightarrow jet$ -energy differential studies of quenching

a case study: ratio of the jet to $Z p_T$ expected **similar** in ArAr and PbPb collisions

"Everything...flows"(?)

- □ Long-range (2 < $|\Delta \eta|$ < 4), near-side ($\Delta \phi \approx 0$) angular correlations are seen at LHC at various \sqrt{s} in
 - heavy ion (XeXe and PbPb), and
 - "small systems", i.e., high-multiplicity pPb and pp collisions
- Signs reminiscent of **collective behavior** of a quark-gluon plasma (QGP)

Hard and "rare" probes HI program @ HL-LHC

- Precise extractions of nPDFs crucial for
 - studying the strong interaction in the high-density regime
 - modeling the initial state needed to characterize the QGP
- LHC nuclear data are a game changer
 - different groups **already** include W/Z boson data in global fits
- We can assess the QGP density evolution
 - top quark a **new tool** profiting from lighter ions
- **a** To refine modeling of dilute systems and optimize their choice
 - the available info already indicates the potential of **lighter** systems
 - isoscalar beams even complementary choice to HL-LHC pp
 - of relevance for **BSM** searches too (e.g., J Phys G 47 (2020) 060501)

Extending the LHC HI program & CMS LS3 upgrades

ETL

- ☑ Runs 3+4: main **goal** of >10/nb PbPb
 - focus on rare triggers
 - even larger minimum-bias event sample
 - > 6 kHz at HLT in Run 3, goal to increase for Run 4
- ☑ Major Phase-2 upgrades for HL-LHC (2026+)
 - Extension of tracker (muon systems) acceptance from $|\eta| < 2.5$ to < 4.0 (3.0), etc.

BTL

- Precise timing detectors for pileup rejection
 - byproduct TOF PID
- ☑ Radiation-hard zero degree calorimeter (2021+)

ETI

CERN-LHCC-2017-027

Outlook: General goals in HL-LHC & beyond

- **Parton densities** in broad kinematic range and search for **saturation**
- **Macroscopic** long-wavelength QGP properties with unprecedented precision
- **Collectivity** across colliding systems
- **Microscopic** parton dynamics underlying QGP properties

Key characteristics of the latest fits of nPDFs (in chronological order from left to right)

arXiv:1704.04036

	EPS09	dssz12	ка15	NCTEQ15	epps16
Order in α_s	LO & NLO	NLO	NNLO	NLO	NLO
Neutral current DIS $\ell + A/\ell + d$	\checkmark	\checkmark	V	\checkmark	\checkmark
Drell-Yan dilepton p+A/p+d	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RHIC pions d+Au/p+p	\checkmark	\checkmark		\checkmark	\checkmark
Neutrino-nucleus DIS		\checkmark		ecian matrix	\checkmark
Drell-Yan dilepton $\pi + A$			- He		\checkmark
LHC p+Pb jet data	$\chi^2_{\text{global}} \approx \chi^2_0 + \sum_{i,j}$	$(a_i - a_i^0)$	H_{ij} $(a_j - a_j)$	$\chi_{j}^{0}) = \chi_{0}^{2} + \sum_{i} z_{i}^{i}$	✓
LHC p+Pb W, Z data			Ĵ		\checkmark
orViv:1704.04024		Parameter var	ations		
$Q \operatorname{cut} \operatorname{in} \operatorname{DIS}$	1.3 GeV	1 GeV	1 GeV	2 GeV	1.3 GeV
datapoints	929	1579	1479	708	1811
free parameters	15	25	16	17	20
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian
error tolerance $\Delta \chi^2$	50	30	not given	35	52
Free proton baseline PDFs	стеоб.1	мѕтw2008	jr09	стеобм-like	ст14NLO
Heavy-quark effects		\checkmark		\checkmark	\checkmark
Flavor separation				some	\checkmark
Reference	[JHEP 0904 065]	[PR D85 074028]	[PR D93, 014026]	[PR D93 085037]	[EPJ C77 163]

As compared to the PDF fitting landscape

Ubiali, DIS2017

April 2017	NNPDF3.0	MMHT2014	СТ14	HERAPDF2.0	CJ15	ABMP16
Fixed Target DIS	 	 	×	×	 	×
JLAB	×	×	×	×	~	×
HERA I+II	 	 Image: A second s	 	 ✓ 	 	
HERA jets	×	 	×	×	×	×
Fixed Target DY	 	 Image: A set of the set of the	 	×	 	
Tevatron W,Z	 	 	 	×	 	
Tevatron jets	 	 Image: A set of the set of the	 	×	 	×
LHC jets	 	 	×	×	×	×
LHC vector boson	 	 	v	×	×	v
LHC top	 ✓ 	×	×	×	×	 ✓
Stat. treatment	Monte Carlo	Hessian Δχ² dynamical	Hessian Δχ² dynamical	Hessian $\Delta \chi^2 = 1$	Hessian $\Delta \chi^2 = 1.645$	Hessian $\Delta \chi^2 = 1$
Parametrization	Neural Networks (259 pars)	Chebyshev (37 pars)	Bernstein (30-35 pars)	Polynomial (14 pars)	Polynomial (24 pars)	Polynomial (15 pars)
HQ scheme	FONLL	TR'	ΑСΟΤ-χ	TR'	ΑСΟΤ-χ	FFN (+BMST)
Order	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO	NLO/NNLO

Signal separation: measuring $t\bar{t}$ with leptons only

- \blacksquare Use the kinematics of the two leading- p_T leptons to train a BDT
 - $p_{\rm T}(\ell_1)$, the $p_{\rm T}$ of the highest- $p_{\rm T}$ lepton,
 - A_{p_T} , the asymmetry in the lepton- p_T 's, namely $\frac{p_T(\ell_1) p_T(\ell_2)}{p_T(\ell_1) + p_T(\ell_2)}$,
 - $p_{\rm T}(\ell \ell)$, the $p_{\rm T}$ of the dilepton system,
 - $|\eta(\ell \ell)|$, the absolute η of the dilepton system,
 - $|\Delta \phi(\ell \ell)|$, the absolute value of the separation in ϕ of the two leptons, and
 - $\Sigma |\eta_i|$, the sum of the absolute η 's of the leptons.

A nice heuristic idea for a yocto-chronometer!

Knowing the energy loss, it is possible to build the density evolution profile of the medium!

BSM searches with heavy ion collisions at the LHC

Submitted as input to the update of the European Particle Physics Strategy (EPPS)

arXiv: 1812.07688

Production mode	BSM particle/interaction	Remarks
Ultraperipheral	Axion-like particles Radion Born-Infeld QED Non-commutative interactions	$\gamma \gamma \rightarrow a, m_a \approx 0.5 100 \text{GeV}$ $\gamma \gamma \rightarrow \phi, m_\phi \approx 0.5 100 \text{GeV}$ via $\gamma \gamma \rightarrow \gamma \gamma$ anomalies via $\gamma \gamma \rightarrow \gamma \gamma$ anomalies
Schwinger process	Magnetic monopole	Only viable in HI collisions
Hard scattering	Dark photon Long-lived particles (heavy ν)	$m_{A'} \lesssim 1 \text{GeV}$, advanced particle ID $m_{\text{LLP}} \lesssim 10 \text{GeV}$, improved vertexing
Thermal QCD	Sexaquarks	DM candidate

Table 1: Examples of new-physics particles and interactions accessible in searches with HI collisions at the LHC, listed by production mechanism. Indicative competitive mass ranges and/or the associated measurement advantages compared to the pp running mode are given.

- Also not exhaustive list
 - e.g, tau g–2 using LHC heavy ion collisions in arXiv: 1908.05180