More is different

Selected theoretical aspects of the upcoming LHC heavy ion programme

Urs Achim Wiedemann
CERN PH-TH

From elementary interactions to collective phenomena

1973: asymptotic freedom

QCD = quark model + gauge invariance

Today: mature theory with a precision frontier

How do collective phenomena and macroscopic properties of matter emerge from fundamental interactions?

QCD much richer than QED:

- non-abelian theory
- degrees of freedom change with Q^2

From 1st principles: QCD @ high temperature

QCD 'phase transition' at

Characteristic dependencies
 above T_c

 $s(T)/s_{SB}(T)$

Wuppertal-Budapest, arXiv:1005.3508, arXiv:1007.2580

- Recent progress in lattice QCD:
 - + fluctuation measures (susceptibilities)
 - + transport properties

From 1st principles: QCD @ high parton density

At high $\sqrt{s_{NN}}$, standard distinction between hard and soft breaks down:

- At small-x, parton densities $\rho \sim Q_s^2/\alpha_s(Q_s^2)$ are <u>saturated</u> up to large scales $Q^2 < Q_{sat}^2(\sqrt{s})$ $Q_s^2/\alpha_s(Q_s^2)$ are $Q_s^2/\alpha_s(Q_s^2)$ are $Q_s^2/\alpha_s(Q_s^2)$
- Coupling constant is small $\alpha_s(Q_{nd}^2(x) >> \Lambda_{QCD})$
- Non-linear QCD evolution in perturbative regime.

Is more different in heavy ion collisions at collider energies?

I. Elliptic Flow: Hallmark of a collective phenomenon

Elliptic Flow: insights from RHIC

Mean free path vs. collectivity

Theory

tools:

RHIC: - v2 close to maximal

- characteristic <u>mass-dependence</u> (common flow for all hadrons)
- v₂ satisfies <u>quark number counting rules</u>
- fluid dynamic simulations agree with size of v2, dependence on pT, PID and centrality at midrapidity
- constrain dissipative properties

Strong claims at RHIC: perfect liquid

Physics in reach with ~106 Pb+Pb events!

High pT Hadron Spectra at RHIC ...

$$R_{AA}(p_{T},\eta) = \frac{dN^{AA}/dp_{T}d\eta}{n_{coll} dN^{NN}/dp_{T}d\eta}$$

Centrality dependence:

... are suppressed => implications for LHC

The pp baseline for R_{AA}

 Quantifying nuclear modification requires control of normalization

$$R_{AA}(p_{T},\eta) = \frac{\overline{dN^{AA}/dp_{T}d\eta}}{n_{coll} dN^{NN}/dp_{T}d\eta}$$

- + pp-reference spectrum at same $\sqrt{s_{_{N\!N}}}$
 - a) interpolating between .9 and 7 TeV pp (uncertainties at low p_T?)
 - b) measuring pp @ 2.76 TeV
- + testing Glauber theory (n_{coll})
- + alternative tests: e.g. photon spectra

The role of p-Pb

Refined baseline for heavy ion programme
 Ex: theory of R_{AA} relies on factorization

but collinear factorization of A-dependence is assumed, pA@LHC provides decisive tests

current uncertainties in NLO nPDF-fits

 a study of the physics potential of pA@LHC is currently in preparation (ed. Salgado), including a discussion of tests of saturation physics sensitivity of R_{pPb} on nPDFs

 strong arguments to initiate a feasibility study of all aspects of pA @ LHC

Going beyond single inclusive spectra

 Requires jet reconstruction in high multiplicity environment

- Significant recent progress:
- modern jet finding algorithms (FastJet)
- MC models of medium-modified jets
- prelim. analyses at RHIC (E_T < 40 GeV)</p>

- Interplay between TH and EXP clearly needed:
- strong motivation to aim for "several" 10⁷ events in first LHC Pb+Pb run

Quarkonium in heavy ion collisions @ LHC

 schematic motivations for studying charmonium charmonium as a thermometer

Dissociation vs regeneration

- With a few x 10⁷ min. bias events, only marginal conclusions possible (but dramatic enhancements predicted by some regeneration models should be visible.)
- Study of charmonium and bottomonium physics in heavy ion collisions requires maximal luminosity.
- Benchmarking needs may differ significantly from those for R_{AA} and jets (open charm measurements in A-A provide baseline on top of which regeneration effects could be quantified)

pp as mini-AA?

- Tails of multiplicity distributions in pp @ LHC comparable to charged multiplicities in semi-peripheral Cu-Cu collisions at RHIC (J. Schukraft, QM08 Jaipur).
- But energy densities are vastly different!!

- To what extent does event multiplicity determine collectivity?
 - hadrochemistry
 - flow (elliptic flow)

- ...

Instead of a conclusion

$$\left| \sqrt{s} \right|_{LHC} > 10 \left| \sqrt{s} \right|_{RHIC}$$

First Pb beam will help shape the LHC heavy ion programme.