Public website: <u>http://alice.cern/</u>

Twitter: <u>@ALICEexperiment</u> Facebook: <u>@ALICE.experiment</u>

ALICE at CERN — a very short introduction

Marco van Leeuwen, Nikhef

The CERN accelerator complex

Structure of matter

The particles of the Standard Model

Structure of matter

Quarks and gluons are the building blocks of nuclear matter Main interaction: Strong interaction (QCD)

The particles of the Standard Model

QCD is very different from electromagnetism, gravity; common intuition may fail

G.S. Bali, hep-ph/0411206

For larger separation: generating a qqbar pair is energetically favoured Color charges (quarks and gluons) cannot be freed Confinement important at length scale $1/\Lambda_{QCD} \sim 1$ fm

Thought experiment: separating charges

G.S. Bali, hep-ph/0411206

For larger separation: generating a qqbar pair is energetically favoured Color charges (quarks and gluons) cannot be freed Confinement important at length scale $1/\Lambda_{QCD} \sim 1$ fm

Thought experiment: separating charges

Time:0.08

A heavy ion collision

Initial stage: nuclei -> Quark Gluon Plasma (T ~ 10¹² K) -> Hadrons

Time:0.08

A heavy ion collision

Initial stage: nuclei -> Quark Gluon Plasma (T ~ 10¹² K) -> Hadrons

Simplified collision picture: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Simplified collision picture: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Azimuthal distribution single event

Anisotropic flow: expansion of the Plasma

lumpy

Schenke and Jeon, Phys.Rev.Lett.106:042301

Viscosity of the Quark Gluon Plasma

J. E. Bernhard et al, arXiv: 1605.03954

Comparing to other fluids/liquids

Viscosity minimal at liquid-gas transition QGP viscosity smaller than any atomic matter

Viscosity of the Quark Gluon Plasma

J. E. Bernhard et al, arXiv: 1605.03954

Viscosity close to lower bound

Viscosity minimal at liquid-gas transition QGP viscosity smaller than any atomic matter

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x0000000003BBE693

Roles of different detector systems

Particles have different properties/interactions with material Specialised detector systems for e.g.: charged particles, photons, electrons, muons

ALICE detector upgrades: ITS, TPC installation

New inner tracking system

Outer barrels

Inner barrels

Large 'digital camera' 7 layers, pixels: 30x30 µm: precise tracking of charged particles Total area: 10 m²; 12.5 Gpixels

Integration time: 5 µs: up to 200 000 pictures per second!

Time projection chamber

Installation of upgraded TPC

Gas Electron Multiplier (GEM)

New readout/amplification chambers GEM: plastic foils + gas for electron multiplication

39 countries 174 institutes 1927 members

General information

Collaboration members

Organization

Visits

Service Works

Diversity office

Technical Coordination

Run Coordination

Physics Coordination

Documents & Conferences

How does a scientific collaboration work?

http://alice-collaboration.web.cern.ch/

ALICE INDICO

ongoing - ITS shifts

ongoing - ALICE global ioning CERN 2285-Rcomm C15

ALICE mission

The ALICE Collaboration has built a detector optimized to study the collisions of nuclei at the ultrarelativistic energies provided by the LHC. The aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such conditions, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a nrimordial state for the first few millionths of a second after the Rig Rang before quarks and gluons

A place to start: the ALICE website Freely accessible, mostly used for internal communication

ALICE & COVID-19

Meetings on a typical weekday

CALENDAR TODAY

Virtual only

14:00 ITS3 WP2 Meeting

06.70 Taukuba ALICE analysis mosting

00.50 Isukuba ALICE analysis meeting	
09:00 ALF-FRED : LLA and PARALLEL	
SLOW CONTROL	14:00 PWG-HF-HFL Meeting
09:30 CANCELLED // DPG & BTG Calibration & Tracking meetings CERN 14/4-002	15:00 UCT Group Meeting
	15:00 WP1 data model meet
00.70 CTS 02 simulation CEDN 4/D	15:00 PWG - UD PAG - Diffrac
09:50 CIS-OZ simulation CERN 4/R-	meeting CERN 4/3-006
050	15:00 Birmingham ALICE we
09:30 MFT Technical Board meeting	meeting
Vidyo	15:30 FIT Software Meeting
10:00 ALICE ITS DCS CERN 53/R-044	16:00 ALICE Nuclei and Exot
10:30 PWG-HF Physics Analysis Group	meeting Virtual Zoom
HFCJ CERN	16:00 ALICE Journal Club CE
11:00 DPG AOT - Track properties and	16:00 EbyE DAC mosting
selections Vidyo only	
12:00 JYFL meeting	16:00 IG06 meeting
12:00 FIT logos	17:00 HMPID weekly meetin
13:00 NIHAM AliAP meeting	Institutes
13.00 TRD 02 Blacking	17:00 ALICE Review paper -
13:00 TRD 02 Planning	Group 5 (Hadronization of th
14:00 Images of detector	19:30 Creighton Group Meet
14:00 Physics Board Meeting CERN	22:00 ALICE-USA Council Me
160/R-009	update on - 21:46:14
14:00 Xe-Xe towards paper proposal	

P1 data model meeting WG - UD PAG - Diffractive CERN 4/3-006 rmingham ALICE weekly T Software Meeting LICE Nuclei and Exotica PAG Virtual Zoom LICE Journal Club CERN byE PAG meeting 506 meeting MPID weekly meeting Other LICE Review paper - Topical (Hadronization of the QGP) reighton Group Meeting LICE-USA Council Meeting n - 21:46:14

Large community: meetings to discuss, collaborate disseminate information and reach decisions

Activities in an LHC collaboration

- Detector construction and upgrades
 - ALICE initially constructed in early 2000s
 - Various minor upgrades implemented:
 - New detector systems
 - Faster readout electronics
 - Long Shutdown 2: 2019-2021: large upgrade, new detector systems
- Data taking and detector operations
 - Large activity in running years (e.g. 2015-2018): control room staffed 24h/day
 - Many experts 'on call'
- Physics analysis and publication
 - Data analysis: computing, statistics
 - Detector simulation for corrections to measurements
 - Physics modeling/interpreting the results
 - Writing papers and preparing conference presentations

