ALICE at CERN - a very short introduction

Public website: h http://alice.cern/

Marco van Leeuwen, Nikhef

The CERN accelerator complex

Structure of matter

The particles of the Standard Model

Structure of matter

The particles of the Standard Model

Quarks and gluons are the building blocks of nuclear matter Main interaction: Strong interaction (QCD)

Strong interaction: the QCD potential

Field lines
in dipole system

QED

electromagnetic interaction

$$
V(R) \sim-\alpha / R
$$

QCD
strong interaction

QCD is very different from electromagnetism, gravity; common intuition may fail

QCD strings

A simple picture of the strong interaction
G.S. Bali, hep-ph/0411206

Thought experiment: separating charges

QCD potential for 2-quark system
rises indefinitely

For larger separation: generating a qqbar pair is energetically favoured
Color charges (quarks and gluons) cannot be freed
Confinement important at length scale $1 / \Lambda_{Q C D} \sim 1 \mathrm{fm}$

QCD strings

A simple picture of the strong interaction
G.S. Bali, hep-ph/0411206

Thought experiment: separating charges

QCD potential for 2-quark system
rises indefinitely

For larger separation: generating a qqbar pair is energetically favoured
Color charges (quarks and gluons) cannot be freed
Confinement important at length scale $1 / \Lambda_{Q C D} \sim 1 \mathrm{fm}$

A heavy ion collision

MADAI
MADA

Initial stage: nuclei $->$ Quark Gluon Plasma (T ~ $10^{12} \mathrm{~K}$) -> Hadrons

A heavy ion collision

MADAI
MADA

Initial stage: nuclei $->$ Quark Gluon Plasma (T ~ $10^{12} \mathrm{~K}$) -> Hadrons

Azimuthal anisotropy: initial and final states

Simplified collision picture: location of nucleons

$\varepsilon_{n}=\frac{\sum r^{2}\left(\cos ^{2} n \varphi+\sin ^{2} n \varphi\right)}{\sum r^{2}}$

Azimuthal anisotropy: initial and final states

Simplified collision picture: location of nucleons

$$
\varepsilon_{n}=\frac{\sum r^{2}\left(\cos ^{2} n \varphi+\sin ^{2} n \varphi\right)}{\sum r^{2}}
$$

Azimuthal anisotropy: initial and final states

Simplified collision picture: location of nucleons

$$
\varepsilon_{n}=\frac{\sum r^{2}\left(\cos ^{2} n \varphi+\sin ^{2} n \varphi\right)}{\sum r^{2}}
$$

Azimuthal anisotropy: initial and final states

Simplified collision picture: location of nucleons

Azimuthal anisotropy: initial and final states

Simplified collision picture: location of nucleons

Initial state spatial anisotropies ε_{n} are transferred into final state momentum anisotropies v_{n}
by pressure gradients, flow of the Quark Gluon Plasma

Azimuthal anisotropy: initial and final states

Simplified collision picture: location of nucleons

Initial state spatial anisotropies ε_{n} are transferred into final state momentum anisotropies v_{n}
by pressure gradients, flow of the Quark Gluon Plasma

Azimuthal distribution single event

Sum over many events

Anisotropic flow: expansion of the Plasma

Viscosity of the Quark Gluon Plasma

J. E. Bernhard et al, arXiv: 1605.03954
$\xrightarrow[\rightarrow]{\rightarrow}$
$\frac{F}{A}=\eta \frac{d v}{d z}$

Comparing to other fluids/liquids

Viscosity minimal at liquid-gas transition
QGP viscosity smaller than any atomic matter

Viscosity of the Quark Gluon Plasma

J. E. Bernhard et al, arXiv: 1605.03954

viscosity of the QGP

Fit constrains initial state geometry and transport properties at the same time

Viscosity close to lower bound

Comparing to other fluids/liquids

Viscosity minimal at liquid-gas transition QGP viscosity smaller than any atomic matter

$\mathrm{Pb}+\mathrm{Pb} @ \operatorname{sqrt}(\mathrm{~s})=2.76 \mathrm{ATeV}$
2010-11-08 11:30:46
Fill : 1482
Run : 137124
Event : 0x00000000D3BBE693

Roles of different detector systems

Example: CMS

Particles have different properties/interactions with material
Specialised detector systems for e.g.: charged particles, photons, electrons, muons

Detector example: ALICE

e.g. 2015: 100M hadronic $\mathrm{Pb}+\mathrm{Pb}$ collisions, $800 \mathrm{M} \mathrm{p+p}$ collisions

Detector example: ALICE

Central tracker:
$|\eta|<0.9$
High resolution

- TPC
- ITS

e.g. 2015: 100 M hadronic $\mathrm{Pb}+\mathrm{Pb}$ collisions, $800 \mathrm{M} \mathrm{p+p}$ collisions

Detector example: ALICE

e.g. 2015: 100 M hadronic $\mathrm{Pb}+\mathrm{Pb}$ collisions, $800 \mathrm{M} \mathrm{p}+\mathrm{p}$ collisions

Detector example: ALICE

e.g. 2015: 100M hadronic $\mathrm{Pb}+\mathrm{Pb}$ collisions, $800 \mathrm{M} \mathrm{p+p}$ collisions

Detector example: ALICE

e.g. 2015: 100 M hadronic $\mathrm{Pb}+\mathrm{Pb}$ collisions, $800 \mathrm{M} \mathrm{p}+\mathrm{p}$ collisions

ALICE detector upgrades: ITS, TPC installation

Time projection chamber

New inner tracking system

Outer barrels

Inner barrels

Large 'digital camera'
7 layers, pixels: $30 \times 30 \mu \mathrm{~m}$: precise tracking of charged particles Total area: $10 \mathrm{~m}^{2} ; 12.5$ Gpixels

Integration time: $5 \mu \mathrm{~s}$: up to 200000 pictures per second!

Gas Electron Multiplier (GEM)
New readout/amplification chambers
GEM: plastic foils + gas for electron multiplication

39 countries
174 institutes
1927 members
General information
Collaboration members

Organization

Visits
Service Works
Diversity office
Technical Coordination

Run Coordination
Physics Coordination
Documents \& Conferences
Online

Offline
Analysis

How does a scientific collaboration work?

http://alice-collaboration.web.cern.ch/

Meetings on a typical weekday

CALENDAR TODAY

06:30 Tsukuba ALICE analysis meeting

09:00 ALF-FRED : LLA and PARALLEL SLOW CONTROL

09:30 CANCELLED // DPG \& BTG
Calibration \& Tracking meetings CERN 14/4-002
09:30 CTS-02 simulation CERN 4/R050
09:30 MFT Technical Board meeting Vidyo
10:00 ALICE ITS DCS CERN 53/R-044 10:30 PWG-HF Physics Analysis Group HFC CERN
11:00 DPG AOT - Track properties and selections Vidyo only 12:00 JYFL meeting
12:00 FIT logos
13:00 NIHAM AliAP meeting
13:00 TRD 02 Planning
14:00 Images of detector
14:00 Physics Board Meeting CERN 160/R-009
14:00 Xe-Xe towards paper proposal Virtual only 14:00 ITS3 WP2 Meeting

14:00 PWG-HF-HFL Meeting
15:00 UCT Group Meeting
15:00 WP1 data model meeting 15:00 PWG - UD PAG - Diffractive meeting CERN 4/3-006 15:00 Birmingham ALICE weekly meeting 15:30 FIT Software Meeting 16:00 ALICE Nuclei and Exotica PAG meeting Virtual Zoom 16:00 ALICE Journal Club CERN 16:00 EbyE PAG meeting 16:00 TG06 meeting 17:00 HMPID weekly meeting Other Institutes
17:00 ALICE Review paper - Topical Group 5 (Hadronization of the QGP) 19:30 Creighton Group Meeting 22:00 ALICE-USA Council Meeting update on - 21:46:14

A place to start: the ALICE website Freely accessible, mostly used for internal communication

Large community: meetings to discuss, collaborate disseminate information and reach decisions

Activities in an LHC collaboration

- Detector construction and upgrades
- ALICE initially constructed in early 2000s
- Various minor upgrades implemented:
- New detector systems
- Faster readout electronics
- Long Shutdown 2: 2019-2021: large upgrade, new detector systems
- Data taking and detector operations
- Large activity in running years (e.g. 2015-2018): control room staffed 24h/day
- Many experts 'on call'
- Physics analysis and publication
- Data analysis: computing, statistics
- Detector simulation for corrections to measurements
- Physics modeling/interpreting the results
- Writing papers and preparing conference presentations

