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The CERN accelerator complex
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Structure of matter
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The particles of the Standard Model



Structure of matter
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The particles of the Standard Model

Quarks and gluons are the building blocks of nuclear matter 
Main interaction: Strong interaction (QCD)
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Strong interaction: the QCD potential
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S. Deldar, hep-lat/9909077

QCD
strong interaction

QED
electromagnetic interaction

PotentialField lines 
in dipole system

QCD is very different from electromagnetism, gravity; common intuition may fail



QCD strings
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G.S. Bali, hep-ph/0411206

A simple picture of the strong interaction

QCD potential for 2-quark system 
rises indefinitely

For larger separation: generating a qqbar pair is energetically favoured

Thought experiment:  
separating charges

Color charges (quarks and gluons) cannot be freed
Confinement important at length scale 1/ΛQCD ~ 1 fm
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A heavy ion collision
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MADAI

Initial stage: nuclei  —> Quark Gluon Plasma (T ~ 1012 K)  —> Hadrons

https://madai-public.cs.unc.edu/visualization/heavy-ion-collisions/
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Characterise shape by angular moments:

Simplified collision picture: location of nucleons
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Azimuthal anisotropy: initial and final states



7

Characterise shape by angular moments:

Simplified collision picture: location of nucleons

10− 5− 0 5 10

10−

5−

0

5

10

10− 5− 0 5 10

10−

5−

0

5

10

Azimuthal anisotropy: initial and final states



7

Characterise shape by angular moments:

Simplified collision picture: location of nucleons

10− 5− 0 5 10

10−

5−

0

5

10

10− 5− 0 5 10

10−

5−

0

5

10

10− 5− 0 5 10

10−

5−

0

5

10

Azimuthal anisotropy: initial and final states



7

Characterise shape by angular moments:

Simplified collision picture: location of nucleons

10− 5− 0 5 10

10−

5−

0

5

10

10− 5− 0 5 10

10−

5−

0

5

10

10− 5− 0 5 10

10−

5−

0

5

10

10− 5− 0 5 10

10−

5−

0

5

10

Azimuthal anisotropy: initial and final states



7

Characterise shape by angular moments:
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Azimuthal anisotropy: initial and final states

Initial state spatial anisotropies εn are transferred into  
final state momentum anisotropies vn  

by pressure gradients, flow of the Quark Gluon Plasma
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Characterise shape by angular moments:

Simplified collision picture: location of nucleons
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Azimuthal anisotropy: initial and final states

Initial state spatial anisotropies εn are transferred into  
final state momentum anisotropies vn  

by pressure gradients, flow of the Quark Gluon Plasma



Anisotropic flow: expansion of the Plasma
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Schenke and Jeon, Phys.Rev.Lett.106:042301

Energy density in initial state: 
lumpy

η/s = 0

η/s = 0.16

How much of this is visible in the final state, 
depends on shear viscosity η

No viscosity

Some viscosity



Viscosity of the Quark Gluon Plasma
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J. E. Bernhard et al, arXiv: 1605.03954

Liquid
gasTEvace /−∝η
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T∝η

Viscosity minimal at liquid-gas transition

QGP viscosity smaller than any atomic matter

Comparing to other fluids/liquids
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J. E. Bernhard et al, arXiv: 1605.03954
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Roles of different detector systems
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Particles have different properties/interactions with material

Specialised detector systems for e.g.: charged particles, photons, electrons, muons

Example: CMS



Detector example: ALICE
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e.g. 2015: 100M hadronic Pb+Pb collisions, 800M p+p collisions
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Detector example: ALICE
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Forward muon arm 
-4 < η < -2.5

e.g. 2015: 100M hadronic Pb+Pb collisions, 800M p+p collisions
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ALICE detector upgrades: ITS, TPC installation
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New inner tracking system

Large ‘digital camera’

7 layers, pixels: 30x30 μm: precise tracking of charged particles


Total area: 10 m2; 12.5 Gpixels

Time projection chamber

New readout/amplification

chambers


GEM: plastic foils + gas

for electron multiplication

Integration time: 5 μs: up to 200 000 pictures per second!

Outer barrels Inner barrels

Installation of upgraded TPC



How does a scientific collaboration work?
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http://alice-collaboration.web.cern.ch/

A place to start: the ALICE website

Freely accessible, mostly used for internal communication

Meetings on a typical weekday

Large community:

meetings to discuss, collaborate


disseminate information and reach decisions

39 countries

174 institutes 

1927 members

http://alice-collaboration.web.cern.ch/


Activities in an LHC collaboration

• Detector construction and upgrades

• ALICE initially constructed in early 2000s

• Various minor upgrades implemented:


• New detector systems

• Faster readout electronics


• Long Shutdown 2: 2019-2021: large upgrade, new detector systems

• Data taking and detector operations


• Large activity in running years (e.g. 2015-2018): control room staffed 24h/day

• Many experts ‘on call’


• Physics analysis and publication

• Data analysis: computing, statistics

• Detector simulation for corrections to measurements

• Physics modeling/interpreting the results

• Writing papers and preparing conference presentations
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