The LHC: How does it work? NNV Profielwerkstukreis 4 – 8 oktober 2021

ATLAS

CMS

Accelerating Science and Innovation Jan Uythoven, CERN

Compact Muon Solenoid

CÉRN

- How does the accelerator work?
 - Magnets
 - Radio Frequency
- Energy in the beamThe future

Cern Control Centre

The LHC

Very big Very cold Very high energy

The LHC

Two beams of trillions of protons race around the 27 km ring at 0.99999991 times the speed of light in opposite directions...

So a particle goes around the LHC 11'000 times per second !

LHC tunnel

Overall view of the LHC experiments.

Jan Uythoven, The LHC: Acceleration within limits

Where do the Protons come from?

Basic ingredients of a particle accelerator

$$F = q \Big[E + \big(v \times B \big) \Big]$$

Magnetic field to

- Bend the beam around the circle (dipole magnets)
- Keep the particles together (quadrupole magnets = lenses)
- Electric field to accelerate the particles
 - Very fast varying electric fields = Radio Frequency cavities

Dipole Magnets Bend the beam around the circle

1232

- Number of dipoles •
- **Dipole field at 450 GeV** •
- Dipole field at 7 TeV ۲
- **Bending radius** •
- **Main Dipole Length** ۲
- **Openings (full aperture)** ۲

0.535 T 8.33 T 2803.95 m 14.3 m 56 mm

SUPERCONDUCTING! Cooled with superfluid helium at 1.9 K

The superconductor

Niobium-titanium Rutherford cable

Used 1200 tonnes/7600 km of cable Single cable carries current up to 12 kA

More than just some coils...

During construction: Dipoles all over

In the LHC tunnel

Beam is divergent

Quadrupole magnet

Quadrupole magnets

- A quadrupole magnet will focus in one plane and de-focus in the other.
- Convention: a "focusing" quadrupole focuses in the horizontal plane

The general linear magnet lattice can be parameterized by a 'varying spring constant', K=K(s).

K(s) describes the distribution of focusing strength along the lattice and is periodic.

$$\frac{d^2x}{ds^2} + K(s)x = 0$$

(and similarly for the vertical plane y)

This is <u>Hill's equation</u>.

Relative beam sizes around IP1 (Atlas) in collision

Focus beam down to very small sizes in the experiments using quadrupole magnets

Accelerating the Particles

LHC: beams with an energy of 6.5 TeV = 6 500 000 000 000 V Tera Giga Mega kilo

Radio Frequency Cavities

- RF = Oscillation of field at 400 MHz (Radio Frequency)
- Use the Electrical Field at each passage
- 4 cavities/module 2 modules/beam 16 MV (5.5 MV/m)
- Superconducting to reduce Beam Impedance

4 Cavity RF Module

Lots of bunches

Energy in the Beam

• Electric Energy (RF cavity) → Kinetic energy

E-beam	6.5 TeV = 6.5e12 eV
1 eV	1.6e-19 Joules
Number of bunches	2300
Number of protons per bunch	1.3e11 protons
Energy	311 MJoules

What would be the speed of a car to have the same kinetic energy ?

Car Versus Beam

Electric Energy of the beam \rightarrow Kinetic energy

E-beam	6.5 TeV = 6.5e12 eV
1 eV	1.6e-19 Joules
Number of bunches	2300 (for 2016)
Number of protons per bunch	1.3e11 protons
Energy	311 MJoules

Kinetic Energy of the car

FINE REACH SAN

	Mass car	1800 kg
	Kinetic energy	306 MJoules
	V	583 m/s
	V	2100 km/h
		HUMAN HAIR HUMAN HAIR 50-70 jm 425 Sym in provide in denset
But at the size smaller		
	than a hair	T()/III (Horrison of Benefit

Don't break the machine!

Thread through a very cold, very dark, very small hole...

Lustrum V/d Waals, 5/10/2010

Beam dump block (TDE)

- CERN
- 700 mm \oslash graphite core, with graded density of 1.1 g/cm³ and 1.7 g/cm³
- 12 mm wall, stainless-steel welded pressure vessel, at 1.2 bar of N₂
- Surrounded by ~1000 tonnes of concrete/steel radiation shielding blocks

It is all about Luminosity

Period	Int. Luminosity [fb ⁻¹]
Run 1	29.2
Run 2: 2015	4.2
Run 2: 2016	39.7
Run 2: 2017	50.2
Run 2: 2018	66
Total Run 1+ 2	189.3

Luminosity

$$L = \frac{N^2 k_b f}{4\rho S_x^* S_y^*} F = \frac{N^2 k_b f g}{4\rho e_n b^*} F$$

Ν	Number of particles per bunch
k _b	Number of bunches
f	Revolution frequency
σ*	Beam size at interaction point
F	Reduction factor due to crossing angle
3	Emittance
ε _n	Normalized emittance
β*	Beta function at IP

$$S^* = \sqrt{b^* e}$$

 $e_N = 2.5 \cdot 10^{-6} \text{ m.rad}$ $e = 3.35 \cdot 10^{-10} \text{ m.rad}$ $s^* = 11.6 \cdot 10^{-6} \text{ m}$ $(p = 7 \text{ TeV}, b^* = 0.4 \text{ m})$

29

Quench Limit of LHC Super-Conducting Magnets

Nominal design at 7 TeV

Collimation

beam

Almost 100 collimators and absorbers.

Alignment tolerances < 0.1 mm to ensure that over 99.99% of the protons are intercepted. Primary and secondary collimators are made of reinforced graphite – robust.

Emittances F5448

LHC: big, cold, high energy

1720 Power converters
> 9000 magnetic elements
7568 Quench detection systems
1088 Beam position monitors
~4000 Beam loss monitors

120 tonnes of Helium, down to 1.9 K360 MJ stored beam energy per beam11 GJ total stored energy in magnetic systems

Machine Elements

- Magnets: guidance and transverse 'stability'
 - Dipoles, Quadrupoles, Sextupoles, Octupoles
- Radio Frequency Longitudinal motion
 - Acceleration
 - Feedback
- Injection and Beam Dumping Systems
 - Fast Pulsed Magnets ('Kicker Magnets')
 - Septum Magnets
 - Beam dump block
- Machine Protection
 - Collimation System, other absorbers, Interlock Systems
- Beam Diagnostics & Protection
 - Beam Position, Beam Loss Monitors, Tune Measurement, Synchrotron Light Measurements, Beam Size Measurements
- Cryogenics & Vacuum

Operational cycle

Turn around from stable beams to stable beams - 2 to 3 hours on a good day, followed by Stable Beams, average 6 hours.

Machine Performance 2018

Magnet Training to reach 7 TeV Beam Energy

During the training after LS2 (2021) we needed 3x a sector warm-up – delay of about 3 months each time, partly in parallel

Number of quenches needed to reach 7 TeV

We have had 274 magnet training quenches from 2008-2018 and 614 magnet training quenches in 2021.

	12	23	34	45	56	67	78	81
#Q to reach 11600 A (6.8 TeV) (including flat-top quenches at 11600 A)	0	23	0	0	0	0	42	0
#Q to reach 11950 A (7 TeV) (starting at 11600 A)	0	70	0	0	71	54	67	53
#Q at 11950 A flat-top	0	6	0	1	5	5	5	4

A total of about **65** magnet quenches (corresponding to about 55 circuit quenches) are still needed to bring S23 and S78 to 6.8 TeV.

A total of about **340** magnet quenches (corresponding to about 280 circuit quenches) are still needed to bring the remaining 5 sectors from 6.8 to 7 TeV.

We calculated a 63 % probability for another sector warm-up if we continue training to 7 TeV \rightarrow Experiments want to run \rightarrow Run at 6.8 TeV

Magnet Training to reach 7 TeV Beam Energy 6.8 TeV

During the training after LS2 (2021) we needed 3x a sector warm-up – delay of about 3 months each time, partly in parallel

What's Next ? High-Luminosity LHC

LHC / HL-LHC Plan

HL-LHC

A peak luminosity of L_{peak} = **5×10³⁴ cm⁻²s⁻¹ with levelling**, allowing:

An integrated luminosity of **250 fb⁻¹ per year**, enabling the goal of L_{int} = **3000 fb⁻¹ twelve years after the upgrade**.

Luminosity so far

HiLumi LHC landmarks

In Two Weeks from Now

• Beams again in the LHC after > 2.5 years

Two week long beam test period:

- Machine checkout : 3 days (estimated).
- Beam operation : **11 days**, end 01.11.2021 @ 6AM followed by radio protection survey.

W42	W43									W44						
Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We
18.10		21.10 25.10							01.11							

Beam test outline

The Future @ CERN after the HL-LHC

80-100 km tunnel infrastructure in Geneva area – design driven by pp-collider requirements with possibility of e+-e- (TLEP) and p-e (VLHeC)

FCC (Future Circular Colliders)

 $15 \text{ T} \Rightarrow 100 \text{ TeV in } 100 \text{ km}$ $20 \text{ T} \Rightarrow 100 \text{ TeV in } 80 \text{ km}$

LEGEND

LHC tunnel

HE_LHC 80km option potential shaft location

ocation

0 2012 Google (mage 3: 2012 GroHye (mage 3: 2012 GroHye

Geneva

Saleve

CLIC near CERN: e+e- Collider

P

CERN existing LHC Potential underground siting : CLIC 500 Gev CLIC 1.5 TeV CLIC 3 TeV

Jura Mountains

Lake Geneva

Tunnel implementations (laser straight)

Geneva

Central MDI & Interaction Region

5 March 2020

Deliberation Document

on the 2020 update of the European Strategy for Particle Physics

The European Strategy Group (prepared by the Strategy Secretariat)

European Strategy for Particle Physics (ESPP) Council decided, unanimously and with enthusiastic support, to update the Strategy

Medium-Term Plan 2021-2025

Draft version, which includes preliminary implementation of ESPP, received strong support

 \rightarrow final version for approval in September

Financial feasibility

Cost of tunnel: ~5.5 BCHF; FCC-ee: ~5-6 BCHF; FCC-hh: ~17 BCHF (if after FCC-ee)

→ cannot be funded only from CERN's (constant) budget + additional "ad hoc" contributions from Member and other States → need innovative mechanisms: EC? private funds? donations? First priority of feasibility study: find funds for the tunnel

First priority of feasibility study: no show-stoppers for ~100 km tunnel in Geneva region First priority of feasibility study: magnet technology; how to minimise environmental impact

Bedankt voor jullie aandacht !

CMS

SUISS

Accelerating Science and Innovation

CERN Prévessin

ATLA

SPS

ALICE

CMS: heavier than the Eifel tower

ATLAS: large as a building of 5 floors

ALICE: very sensitive, optimised for ion collisions

LHCb: asymmetric, B-physics

Aim of the game

We want to deliver maximum number of collisions at the maximum beam energy for maximum physics reach

 $E = m \cdot c^2$

The Higgs field gives mass to other particles

http://www.elsevier.com/locate/physleth

IMAGINE A FIELD THAT PERMEATES THE ENTIRE UNIVERSE. EVERY PARTICLE FEELS THIS FIELD, BUT IS AFFECTED IN DIFFERENT AMOUNTS.

CERN

Why is the Higgs so special?

Reduced Energy – the history

10th September 2008: First circulating beams – all smiles

Reduced energy – the history

19th September 2008: electrical arc ruptured bus-bar interconnection during tests without beam – violent He blow-off

Reduced energy – the history

Major damage over a few hundred meters. Back in operation 1 year later.

2013 – 2014: Long Shutdown to repair defective connections between superconducting magnets

2015: Restart with beam energy of 6.5 TeV

SR7 / 27R7

Next 10 years

2012	Run I	4 TeV, peak luminosity 7.7e33					
2013	101	Splice consolidation, R2E, DN200					
2014	LSI	Experiments' consolidation and upgrades					
2015							
2016	Run II	6.5 to 7 TeV, peak luminosity 1.7e34					
2017							
2018	LS2	LHC phase 1 and injector upgrades Experiments' consolidation and upgrades					
2019							
2020	Run III	7 TeV, peak luminosity 2.0e34					
2021							
2022	103	HL-LHC upgrade (insertions, crab cavities)					
2023	LSS	Experiments' HL upgrades					

Followed by many years of HL-LHC running

The LHC has a long future ahead

The HL-LHC Project

 New IR-quads Nb₃Sn (inner triplets)

- New 11 T Nb₃Sn (short)
 dipoles
- Collimation upgrade
- Cryogenics upgrade
- Crab Cavities
- Cold powering
- Machine protection

Major intervention on more than 1.2 km of the LHC

High Luminosity LHC Participants

High Luminosity LHC

CLIC Collaboration

29 Countries – over 70 Institutes

\$

 \bigcirc

Accelerator + Detector collaboration

CERN: Particle Physics and Innovation

Research

Interfacing between fundamental science and key technological developments

CERN Technologies and Innovation

Accelerating particle beams

Detecting particles

Large-scale computing (Grid)

Medical Application as an Example of Particle Physics Spin-off Combining Physics, ICT, Biology and Medicine to fight cancer

Accelerating particle beams ~30'000 accelerators worldwide ~17'000 used for medicine

Hadron Therapy

>70'000 patients treated worldwide (30 facilities)
>21'000 patients treated in Europe (9 facilities)

Leadership in Ion Beam Therapy now in Europe and Japan

Imaging

Clinical trial in Portugal for new breast imaging system (ClearPEM)

PET Scanner

Brain Metabolism in Alzheimer's Disease: PET Scan

Normal Bish

Asholmens Biscaso

CERN Education Activities

Scientists at CERN

Academic Training Programme

Latin American School Natal, Brazil, 2011 Areguipa, Peru, 2013

Physics Students Summer Students Programme

Young Researchers

CERN School of High Energy Physics CERN School of Computing CERN Accelerator School

CERN Teacher Schools

International and National Programmes

The highlight of a remarkable year 2012

Nobel Prize in Physics 2013

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider".

The Worldwide LHC Computing Grid

Tier-0 (CERN): data recording, reconstruction and distribution

Tier-1: permanent storage, reprocessing, analysis

Tier-2: Simulation, end-user analysis

nearly 160 sites, 35 countries ~250'000 cores 173 PB of storage > 2 million jobs/day

10 Gb links

An International collaboration to distribute and analyse LHC data

Integrates computer centres worldwide that provide computing and storage resource into a single infrastructure accessible by all LHC physicists

Verification of Dump Protection

- Switch off the RF
 Debunching fills the abort gap
- Dump Beam
 - Loss in point 6 on absorber elements
 - □ Some losses collimation
 - Clean at experiments: factor 1 : 10 000

Lustrum V/d Waals, 5/10/2010

Beam dump block (TDE)

- CERN
- 700 mm \oslash graphite core, with graded density of 1.1 g/cm³ and 1.7 g/cm³
- 12 mm wall, stainless-steel welded pressure vessel, at 1.2 bar of N₂
- Surrounded by ~1000 tonnes of concrete/steel radiation shielding blocks

At every dump: Check the Extraction Kickers

Lustrum V/d Waals, 5/10/2010

At every dump: Check the Dump Pattern

Lustrum V/d Waals, 5/10/2010

At every dump: Check the Beam Losses

Lustrum V/d Waals, 5/10/2010

- Beam in the Abort Gap
- Asynchronous beam dump \rightarrow quench or damage
 - Several failures possible (synchronisation, MKD erratic)
- Precautionary measures include:
 - □ TCDS (fixed) 6 m long diluter protects extraction septum
 - TCDQ/TCS (mobile) 7 m long diluter kept at about 7-8 σ from the beam at all times
 TCDQM

