Status Report on FCC Accelerator Science and Technology Michael Benedikt, CERN Austrian FCC Meeting, 11 October 2021

LHC

Work supported by the European Commission under the HORIZON 2020 projects EuroCirCol, grant agreement 654305; EASITrain, grant agreement no. 764879; ARIES, grant agreement 730871, FCCIS, grant agreement 951754, and I.FAST, grant agreement 101004730.

EASITrain

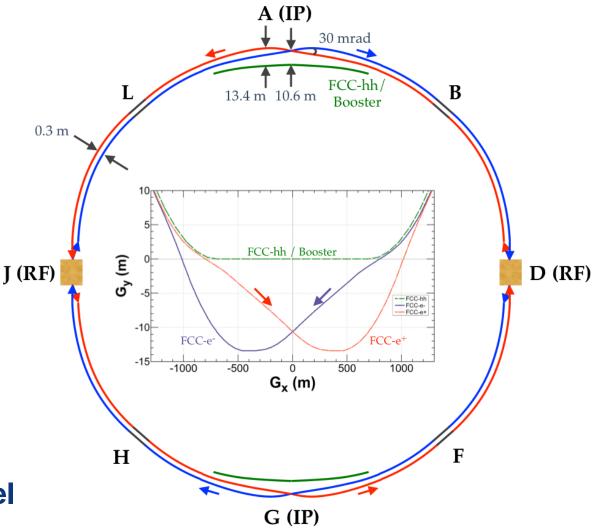
ARIES

SPS

European Commission European Union funding for Research & Innovation

photo: J. Wenninger

FCC-ee basic design choices


Double ring e+ e- collider

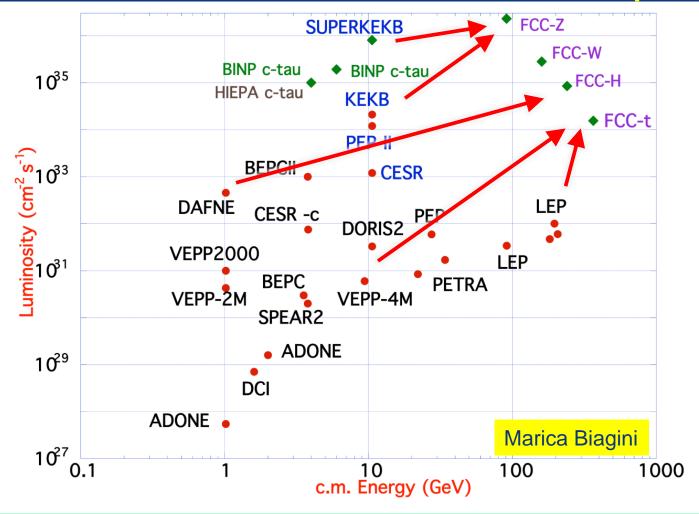
FUTURE

CIRCULAR COLLIDER

- Common footprint with FCC-hh, except around IPs
- Asymmetric IR layout and optics to limit synchrotron radiation towards the detector
- 2 IPs, large horizontal crossing angle 30 mrad, crab-waist collision optics(alternative layouts with 4 IPs under study now)
- Synchrotron radiation power 50 MW/beam at all beam energies

Top-up injection scheme for high luminosity Requires **booster synchrotron in collider tunnel**

FCC-ee collider parameters (stage 1)


FUTURE CIRCULAR

COLLIDER

parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	230	28	8.5	1.55
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

FCC-ee design concept

based on lessons and techniques from past colliders (last 40 years)

B-factories: KEKB & PEP-II: double-ring lepton colliders, high beam currents, top-up injection

DAFNE: crab waist, double ring

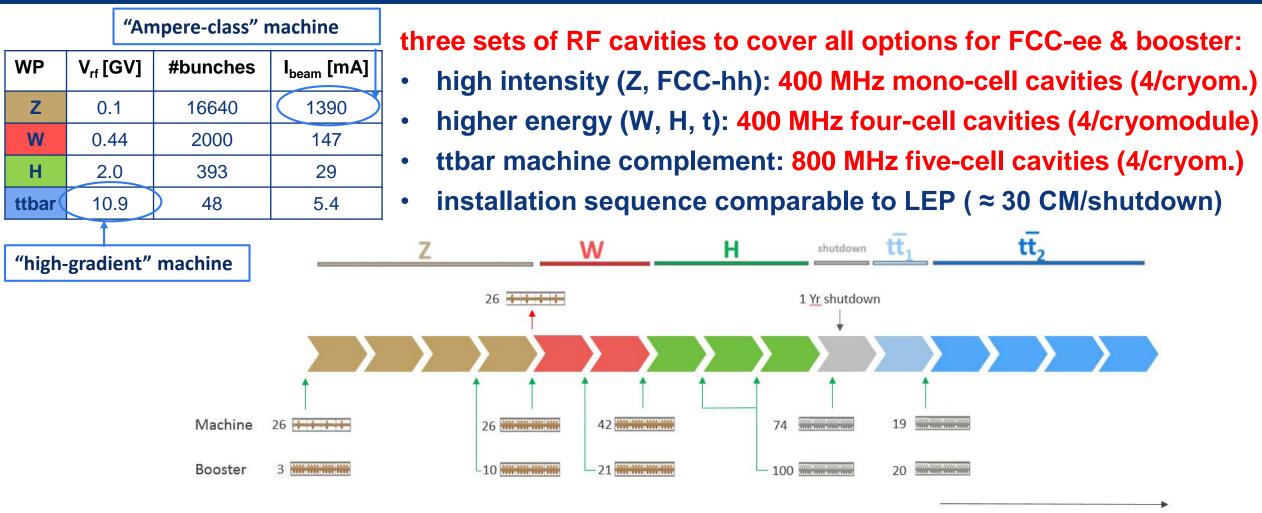
S-KEKB: low β_v^* , crab waist

LEP: high energy, SR effects

VEPP-4M, LEP: precision E calibration

KEKB: *e*⁺ source

HERA, LEP, RHIC: spin gymnastics


combining successful ingredients of several recent colliders → highest luminosities & energies

FCC Accelerator Science & Technology Michael Benedikt Vienna, 11 October 2021

FUTURE CIRCULAR COLLIDER

FCC-ee RF staging scenario

time (operation years)

FUTURE

CIRCULAR COLLIDER

FCC SRF R&D Program Structure in a Nutshell

Cavity Studies

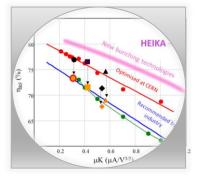
- Optimized Cavity Shape, Technology and Operating Temperature (complexity, power consumption, Q_o, E_{acc})
- Design 1- & 4-cell Cavities
- Beam-Cavity Interaction
- Cavity Control System (LLRF)

SRF & Substrate Technologies

- Improved Cavity Engineering: New SC Materials, Novel Fabrication Methods, Substrate Surface Preparation, Coating Techniques
- Fabrication & Testing of 1-I & 4-cell cavities for new cryomodule
- Collaboration with
 international Partners

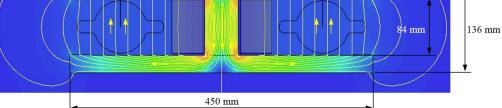
Cryomodule Development

- Engineering design of 400 MHz cryomodule including ancillaries
- Building a 2 cavity CM which can host 1-/4-cell 400 MHz cavities
- R&D Collaboration with int'l Partners (e.g. JLAB)
- 800 MHz CM: Profit from Ongoing Development @ PERLE in Paris


FPC & HOM RF Couplers

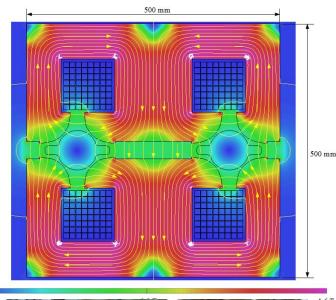
- Improved design, fabrication and testing of 400 MHz Fundamental Power Coupler (FPC)
- FPC R&D towards 1MW CW fixed/movable FPC
- 'Adjustable' FPC (external large adaptation of Q_{ext})
- HOM coupler production

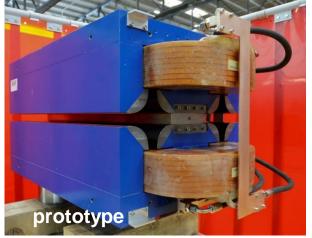
RF Power Sources


- novel klystron bunching methods
- LHC klystron retrofit as proof of principle
- prototype design, fabrication and testing

Prototypes of FCC-ee low-power magnets

Twin-dipole design with 2× power saving 16 MW (at 175 GeV), with Al busbars

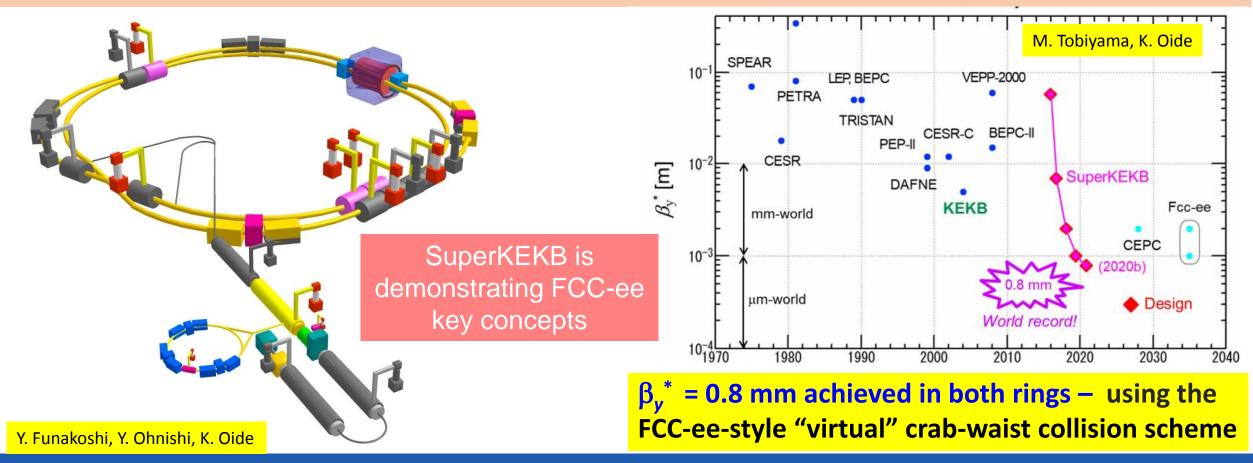

1.0 T



FUTURE CIRCULAR COLLIDER

CERN

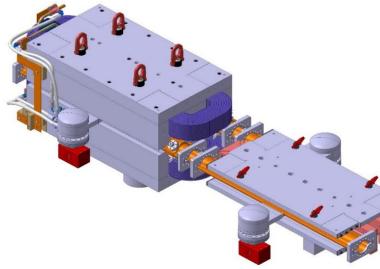
FCC Accelerator Science & Technology Michael Benedikt Vienna, 11 October 2021 Twin F/D arc quad design with 2× power saving 25 MW (at 175 GeV), with Cu conductor



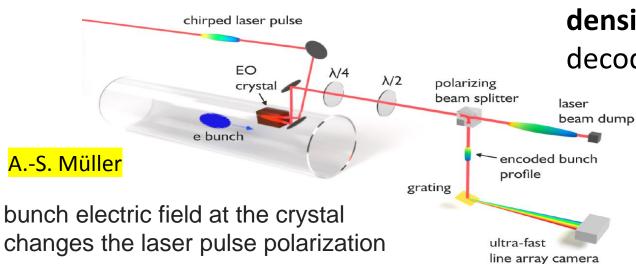
Super KEKB

SuperKEKB – pushing luminosity and β^*

<u>Design</u>: double ring e⁺e⁻ collider as *B*-factory at 7(e⁻) & 4(e⁺) GeV; design luminosity ~8 x 10³⁵ cm⁻²s⁻¹; $\beta_y^* \sim 0.3$ mm; nano-beam – large crossing angle collision scheme (crab waist w/o sextupoles); beam lifetime ~5 minutes; top-up injection; e⁺ rate up to ~ 2.5 10¹² /s ; under commissioning



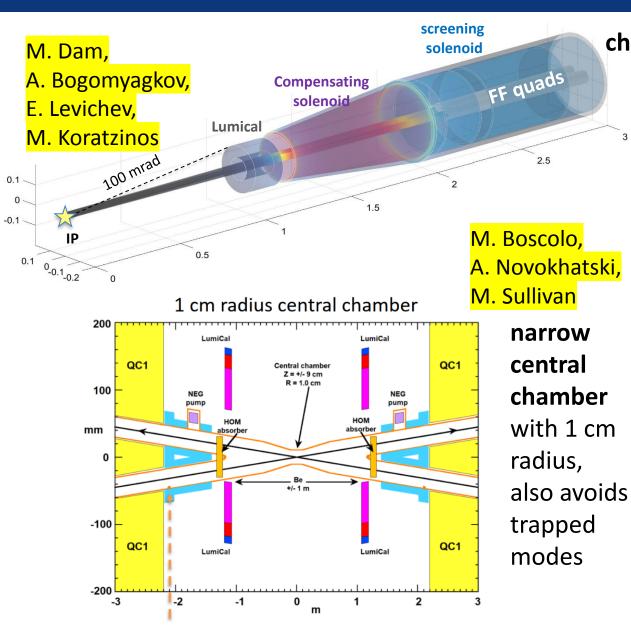
FCC Accelerator Science & Technology Michael Benedikt Vienna, 11 October 2021


new world record $L = 3.12 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ on 22 June '21

FCC key deliverables: prototypes by 2025

FCC-ee complete arc half-cell mock up

including girder, vacuum system with antechamber + pumps, dipole, quadrupole + sext. magnets, BPMs, cooling + alignment systems, technical infrastructure interfaces.


key beam diagnostics elements

bunch-by-bunch turn-by-turn longitudinal charge
density profiles based on electro-optical spectral
decoding (beam tests at KIT/KARA);

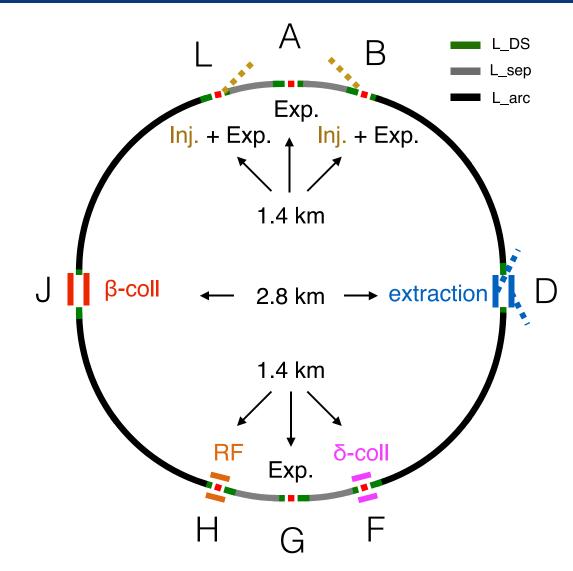
ultra-low emittance measurement (X-ray interferometer tests at SuperKEKB, ALBA); beam-loss monitors (IJCLab/KEK?); beamstrahlung monitor (KEK); polarimeter ; luminometer

FCC-ee Machine Detector Interface

FUTURE CIRCULAR

COLLIDER

challenging integration: 2 T detector solenoid, luminosity monitor 3 (Bhabha scattering), compensation & shielding solenoids



prototype Q1 canted cosine theta with fringe field correction, using LHC SC cable

field measurement at warm

M. Koratzinos

FCC hh basic design choices

- dual aperture superconducting magnets
- two high-luminosity experiments (A & G)
- two other experiments (L & B) combined with injection upstream of experiments
- two collimation insertions
 - betatron cleaning (J)
 - momentum cleaning (F)
- extraction/dump insertion (D)
- RF insertion (H)
- Injection from LHC (~3 TeV) or scSPS (~1.2 TeV)
- Alternative layouts under study

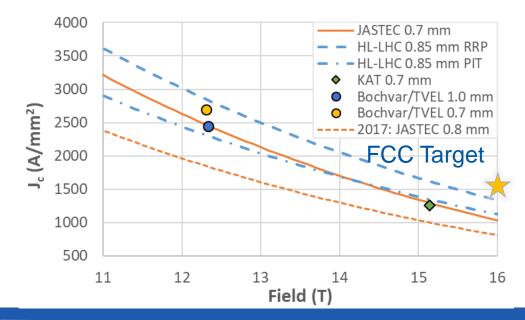
FUTURE

CIRCULAR

CIRCULAR FUTURE CIRCULAR FCC-hh (pp) collider parameters (stage 2)

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	100		14	14
dipole field [T]	16		8.33	8.33
circumference [km]	97.75		26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2400		7.3	3.6
SR power / length [W/m/ap.]	28.4		0.33	0.17
long. emit. damping time [h]	0.54		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8.4		0.7	0.36
Michael Benedikt				

worldwide FCC Nb₃Sn program


Main development goal is wire performance increase:

- J_c (16T, 4.2K) > 1500 A/mm² \rightarrow 50% increase wrt HL-LHC wire
- Reduction of coil & magnet cross-section

FUTURE <u>CIRCUL</u>AR

COLLIDER

After 1-2 years development, prototype Nb₃Sn wires from several new industrial FCC partners already achieve HL-LHC J_c performance

FCC Accelerator Science & Technology Michael Benedikt Vienna, 11 October 2021

FCC conductor development collaboration:

• Bochvar Institute (production at TVEL), Russia

5400 mm²

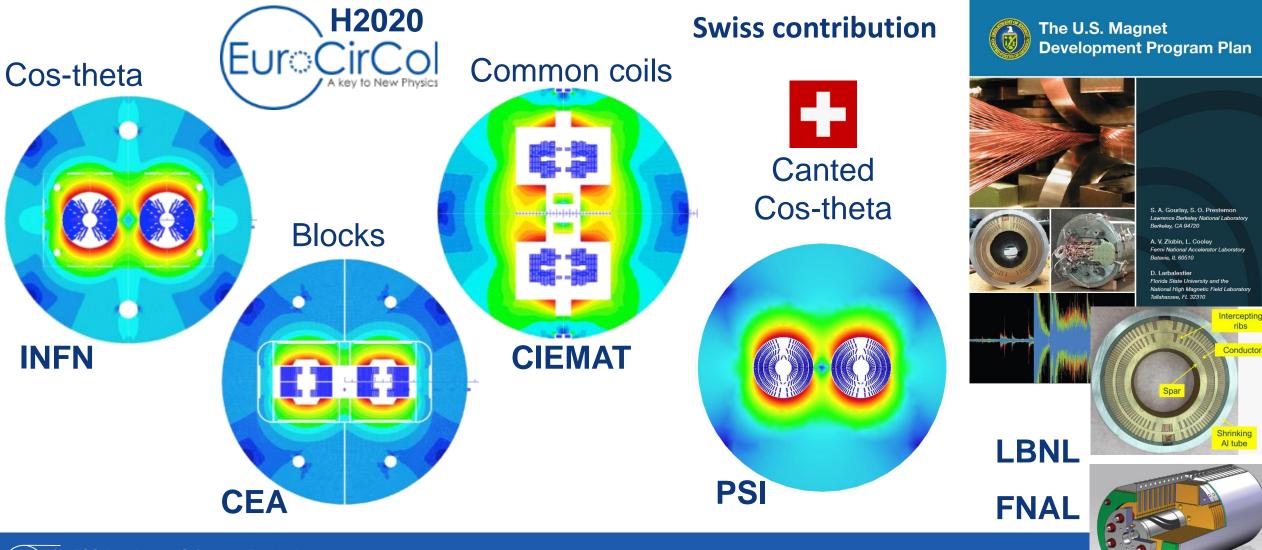
~1.7 times less SC 3150 mm²

~10% margin

FCC ultimate

• Bruker, Germany, Luvata Pori, Finland

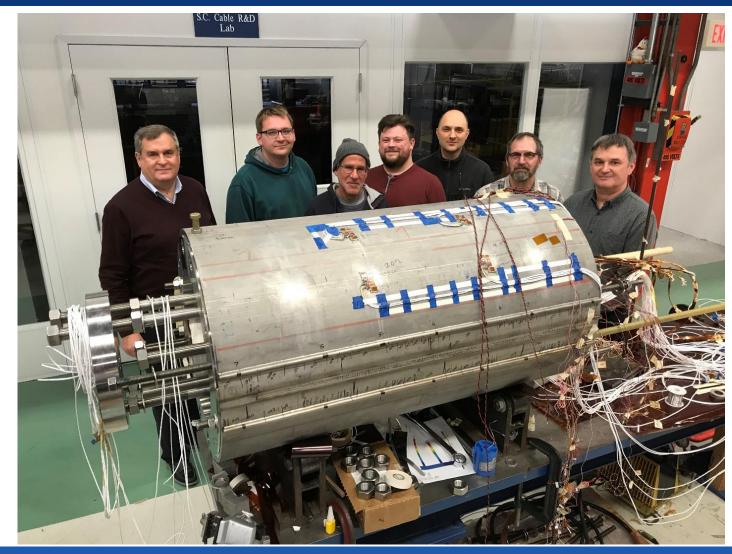
~10% margin

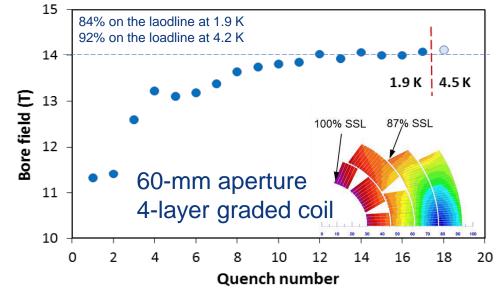

HL-LHC

- KEK (Jastec and Furukawa), Japan
- KAT, Korea, Columbus, Italy
- University of Geneva, Switzerland
- Technical University of Vienna, Austria
- SPIN, Italy, University of Freiberg, Germany

2019/20 results from US, meeting FCC J_c specs:

- **Florida State University:** high-J_c Nb₃Sn via Hf addition
- **Hyper Tech /Ohio SU/FNAL**: high-J_c Nb₃Sn via artificial pinning centres based on Zr oxide.

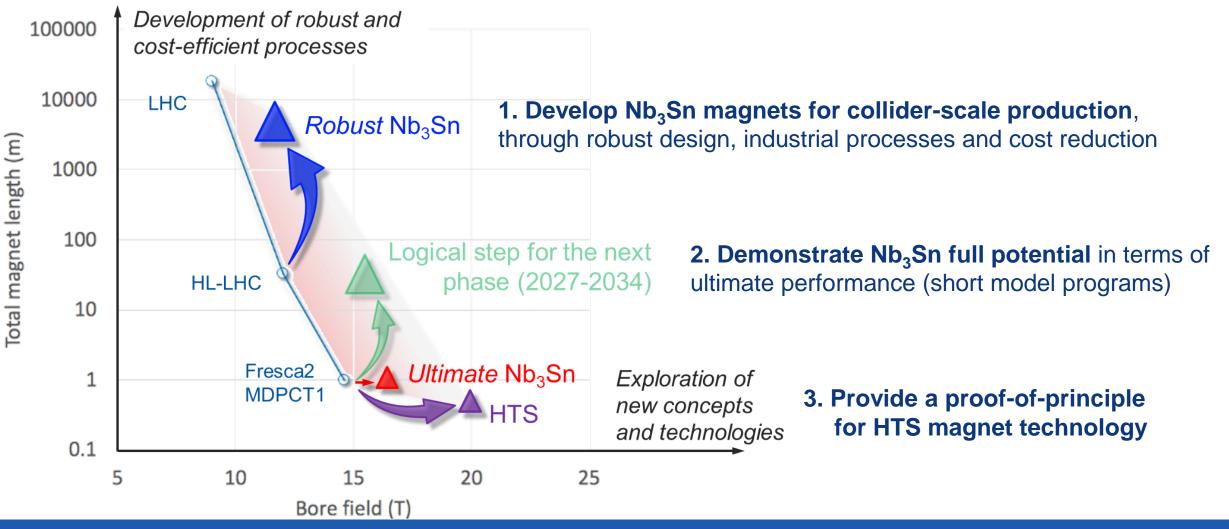

CIRCULAR 16 T dipole design activities and options



RN FCC Accelerator Science & Technology Michael Benedikt Vienna, 11 October 2021

Short model magnets (1.5 m lengths) will be built until 2025

CIRCULAR US – MDP: 14.5 T magnet tested at FNAL



- 15 T dipole demonstrator
- Staged approach: In first step prestressed for 14 T
- Second test in June 2020 with additional pre-stress reached 14.5 T

FCC Accelerator Science & Technology Michael Benedikt Vienna, 11 October 2021

CIRCULAR COLLIDER High Field Magnet program goals until 2027

- FCC-ee is first stage of FCC integrated programme; first physics ~2040
- FCC-ee design incorporates many lessons from recent & present e⁺e⁻ colliders, and goes further! SuperKEKB demonstrates key concepts
- FCC-ee = efficient and sustainable collider at the e⁺e⁻ energy frontier: highest luminosity per input power, highest luminosity per construction cost, most precise energy calibration, and ultimate upgrade potentials (ERL-based FCC-ee, 100 TeV FCC-hh, ...)
- Prototypes of FCC-ee key components by 2025
- **Superconducting cable & high-field magnet programme** prepares for 100 TeV proton-proton collider, FCC-hh, in the same tunnel, to begin operation around ~2060

