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We are here to help!

There is no such thing as a ”stupid question”!
There is no such thing as a ”silly question”!
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PHYSICS BACKGROUND

◮ What is the physics behind the data?

◮ Learn the basics of the physics processes present in the data



A HEP-based example: the Higgs search

The decay of the Standard Model Higgs boson to two Z bosons and
subsequently to four leptons, this is known as a golden channel.

Using the ATLAS data collected during 2016 at a center-of-mass energy of 13
TeV , equivalent to 10 fb−1 of integrated luminosity.



HEP style plotting with mplhep

The decay of the Standard Model Higgs boson to two Z bosons and
subsequently to four leptons, this is known as a golden channel.

Using the CMS data collected during 2011 − 2012.
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◮ The LHC Experiments

◮ The Standard Model (SM)

◮ Spontaneous Symmetry Breaking (SSB) and Mass Generation: The
Higgs Mechanism in the SM

◮ Decays of the SM Higgs Boson



The LHC Experiments

https://cds.cern.ch/record/40525



A Toroidal LHC Apparatus: The ATLAS Detector

https://cds.cern.ch/record/1095924

The ATLAS detector has the dimensions of a cylinder, 46 m long, 25 m in
diameter, and weighs 7,000 tonnes.



A Toroidal LHC Apparatus: The ATLAS Detector

https://cds.cern.ch/record/2770815

The ATLAS detector has the dimensions of a cylinder, 46 m long, 25 m in
diameter, and weighs 7,000 tonnes.



Compact Muon Solenoid: The CMS Detector

https://cds.cern.ch/record/2204863

The CMS detector has the dimensions of a cylinder, 21 m long, 15 m in
diameter, and weighs 14,000 tonnes.



Higgs Production Mechanisms at the LHC
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The Standard Model (SM)

https://www.symmetrymagazine.org/standard-model/
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The SM Lagrangian

The SM is a quantum field theory that is based on the gauge symmetry

SU(3)C × SU(2)L × U(1)Y .

This gauge group includes the symmetry group of the strong interactions,
SU(3)C , and the symmetry group of the electroweak (EW) interactions,
SU(2)L × U(1)Y .
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The gauge part is

Lgauge = −1

4
W

a
µνW

µν
a − 1

4
BµνB

µν

where W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ǫ

abcW b
µW

c
ν and Bµν = ∂µBν − ∂νBµ are the

field strength tensors for the SU(2) and U(1) gauge fields, respectively.
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The EW theory is based on the SU(2)L × U(1)Y lagrangian

LSU(2)×U(1) = Lfermions + Lgauge + LScalar + LYuk

The scalar part of the lagrangian is

LScalar = (DµΦ)†(DµΦ) − V (Φ†Φ)

where V (Φ†Φ) = µ2Φ†Φ+ λ(Φ†Φ)2.

The Yukawa lagrangian is

LYuk = −λeLΦeR − λdQΦdR − λuQΦ̃uR + h.c.
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Generation: The Higgs Mechanism in the SM

Experimentally, the weak bosons are massive. We give mass to the gauge
bosons through the Higgs Mechanism: generate mass terms from the kinetic

energy term of a scalar doublet field Φ that undergoes spontaneous symmetry
breaking.
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For µ2 < 0, the neutral component of Φ will develop a vev

< Φ >0≡< 0|Φ|0 >=

(

0
υ√
2
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with

υ =
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)1/2



For µ2 < 0, the neutral component of Φ will develop a vev

< Φ >0≡< 0|Φ|0 >=

(

0
υ√
2

)

with

υ =

(

− µ2

λ

)1/2

The W and Z bosons acquire their masses, while the photon remains massless

MW =
1

2
υg2,

MZ =
1

2
υ
√

g2
2 + g2

1 ,

MA = 0



What About the Fermion Masses?

We can use the same scalar field Φ to generate the fermion masses, with
Y = +1, and the isodoublet Φ̃ = iτ2Φ

⋆, with Y = −1. For any fermion
generation, we introduce the SU(2)L × U(1)Y invariant Yukawa lagrangian

LYuk = −λeLΦeR − λdQΦdR − λuQΦ̃uR + h.c.

and repeat the same procedure as before.
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We can use the same scalar field Φ to generate the fermion masses, with
Y = +1, and the isodoublet Φ̃ = iτ2Φ
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generation, we introduce the SU(2)L × U(1)Y invariant Yukawa lagrangian
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(

νe eL
)

(

0
υ + H

)

eR + ...

= − 1√
2
λe(υ + H)eLeR + ...

The constant term in front of f LfR (and h.c.) is identified with the fermion
mass

me =
λeυ√
2
,mu =

λuυ√
2
,md =

λdυ√
2



The Higgs Particle in the SM

The kinetic part of the Higgs field, 1
2
(∂µH)2, comes from the term involving
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From this lagrangian, we have that the Higgs boson mass is given by

m
2
H = 2λυ2 = −2µ2



Feynman Rules for Higgs Couplings
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Decays of the SM Higgs Boson

Branching ratios within the SM (Hdecay)

Br(HSM → X ) =
Γ(HSM → X )
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