

Allowed number of bunches for ADT coherent excitation during Run III and for HL-LHC

Cédric Hernalsteens, Daniel Wollmann
$13^{\text {th }}$ August 2021,

ADT coherent excitation

ADT operation in coherent excitation mode

- Potential fast-failure leading to beam losses reaching the critical loss limit within few milliseconds
- Orbit excursion is a superposition of coherent excitation and always-on damping (see figure)

Objectives

- Provides estimates on the time-dynamics of beam losses for various ADT operation modes
- Determine the operational envelope for allowed operation with the ADT in coherent excitation during Run III and for HL-LHC, in terms of
- Length of the excitation window (number of bunches)
- Maximum allowed voltage

ADT model from measurements

Measured coherent excitation of the beam by the ADT normalized to the applied voltage at 6.5 TeV with fitted scaling law

$$
\begin{aligned}
\frac{d}{d t} \sigma(t) & =k-d \cdot \sigma(t) \\
\sigma(t) & =\frac{k}{d}\left(1-e^{-d \cdot t}\right)
\end{aligned}
$$

B. Lindstrom, et al., Phys. Rev. Accel. Beams 23, 081001.

Parametric models

ADT excitation

Critical orbit excursion reached around turn 14 for a full machine

Beam distribution

	LHC Run II	HL-LHC
Beam energy	450 GeV and 7 TeV	
Bunch intensity	1.8 e11 protons/bunch	2.2 e11 protons/bunch
TCP settings	6.5 sigma*	6.7 sigma
BCCM threshold	6 e 11 @ 450 GeV and 3e11@ 7 TeV **	
* 5.5 sigma scaled from $3.5 \mu \mathrm{~m}$ down to $2.5 \mu \mathrm{~m}$ ** for short windows (≤ 64 turns)		

Parametric models

ADT excitation

Critical orbit excursion reached around turn 14 for a full machine

Much faster excitation at 450 GeV !

Integrated beam losses

- Semi-analytical model to compute the losses: integration over the beam distribution
- 1 MJ of beam losses used as baseline critical loss limit assumed for machine protection
- BLM detection with operational threshold for RS01-06 at 125kJ (assumed in IR7 over a few milliseconds)
- BCCM threshold at 3e11 protons for 1-turn window

- Key considerations

- Failure detection is indirect: BLMs and BCCM.
- The failure onset is not observable. Failure onset to damage limit margin is less relevant for indirectly detected failures.
- Need to consider the margin between failure detection and critical loss limit.

$>$ Integrated fractional beam losses as a function of the turn number for different ADT voltages.
> BCCM and BLM thresholds shown for a full machine (2748 bunches).
- Need to consider injection and top energy as much more strength available at 450 GeV

Integrated beam losses

$>$ Integrated fractional beam losses as a function of the turn number for different ADT voltages.
$>$ BCCM and BLM thresholds shown for a full machine (2748 bunches).

- Key considerations

- Failure detection is indirect: BLMs and BCCM.
- The failure onset is not observable. Failure onset to damage limit margin is less relevant for indirectly detected failures.
- Need to consider the margin between failure detection and critical loss limit.
- Need to consider injection and top energy as much more strength available at 450 GeV

Losses and margins - Run III - 7.5 kV

1. For a given number of bunches, compute

- The 1MJ critical loss limit
- The BCCM loss limit
- The BLM loss limit

2. With the loss limits, inverse the loss v. time relationship (see previous slide/figure)
3. Obtain the turn number at which the event occurs
4. Compute the trigger to damage margin

Results and proposals

Losses and margins - 7.5 kV

Conservative 10 turn margin even for the BCCM trigger with up to 2 full batches

2 batches (480 bunches)

proposed as maximum
allowed number of bunches

Losses and margins - 10.0 kV

Margin w.r.t BCCM threshold always below 10 turns

2 batches still provide sufficient margin w.r.t BLM threshold and acceptable limit w.r.t BCCM threshold (7 turns)

2 batches (480 bunches)

proposed as maximum
allowed number of bunches

Losses and margins - 7.5 kV

Losses and margins - 10.0 kV

BLMs do not trigger first (BCCM
is the first trigger)
Very llimited margin with the
BLMs...
Need to reduce the voltage?

2 batches (480 bunches)
provide a 4 turn margin
(BLMs) and 6 turn margin
(BCCM)

Losses and margins - 7.5 kV

Reducing the voltage to 7.5 kV restores acceptable margins.

2 batches (480 bunches) provide a 5 turn margin (BLMs) and 8 turn margin (BCCM)

ADT Coherent excitation (7.5 kV) at 450 GeV - HL- LHC
$2.2 \times 10^{11} \mathrm{p} /$ bunch - TCP @ 6.7 sigma
$\square 1$ MJ limit - BCCM trigger - BLM trigger - BCCM margin - BLM margin

Dump window (+3 turns) Dump window (+10 turns)

Losses and margins - 5.0 kV

Further reducing the voltage to 5.0 kV restores a 10 -turn margin for 2 batches (similar margin as for top energy)

Note that the BCCM still triggers first

Conclusions and proposals

- Conclusions

- Estimates provided for LHC Run 3 and HL-LHC for the margin between the failure trigger (BLM or BCCM thresholds) and the damage limit machine protection threshold
- Maximum voltage (10.0 kV) is not an issue at 7 TeV but needs to be limited at 450 GeV
- Proposal
- Limit the ADT window length to 2 batches (480 bunches) for Run 3 and for HL-LHC
- ADT window length: $14.4 \mu \mathrm{~s}$ or bunch by bunch
- Limit maximum voltage (for beam excitation) at injection energy
- Provides flexible use of the ADT during operation and MD's while preserving sufficient margin

Baseline filling scheme

- BCMS

- 5x48b/inj, SPS batch spacing 200ns and LHC batch spacing 800ns
- $240 \mathrm{~b} / \mathrm{inj}$, train length of $6.8 \mu \mathrm{~s}$

A few more things...

Depleted transverse halo

Considerations for the hollow electron-lens

Integrated beam losses with e-lens

- Transverse distribution with depleted beam halo
- A given integrated loss level happen at a later turn with increasing depletion level

$>$ Integrated fractional beam losses as a function of orbit excursion.
> Larger orbit excursions can be tolerated at the price of increased steepness of the integrated losses curve

Integrated beam losses with e-lens

Margins between given thresholds (BCCM or BLM) and damage limit are reduced with increased halo depletion

$>$ Integrated fractional beam losses as a function of the turn number for different halo depletion.
> BCCM and BLM thresholds shown for a full machine (2748 bunches).

Losses and margins - HL-LHC - E-lens - 10.0 kV

- For 90\% depletion 1 batch can still be considered safe with enough margin

Losses and margins - HL-LHC - E-lens - 10.0 kV

Losses and margins - HL-LHC - E-lens - 10.0 kV

- Extremely limited margin even for a single batch

Losses and margins - HL-LHC - E-lens - 10.0 kV

Losses and margins - HL-LHC - E-lens - 7.5 kV

Reducing the voltage to 7.5 kV restores enough margin for 1 batch

- Due to the very fast losses, the e-lens efficiency (halo depletion factor) does not affect the results strongly

Losses and margins - HL-LHC - E-lens - 7.5 kV

ADT Coherent excitation (7.5 kV) at 450 GeV - HL - LHC 2.2×10^{11} p/bunch - TCP @ 6.7 sigma

$$
\begin{aligned}
& \text { - BCCM margil } \\
& \text { - BLM margin }
\end{aligned}
$$

Dump window (+3 turns) Dump window (+10 turns)

$0.000 ~$

ADT Coherent excitation (7.5 kV) at 450 GeV $2.2 \times 10^{11} \mathrm{p} /$ bunch - TCP @ 6.7 sigma - Elens @ 4.7 sigma - $\eta=0.7$

 - BCCM margin

Proposal for depleted transverse halo

- Proposal
- Limit the ADT window length to 1 batches (240 bunches) for HL-LHC with HEL operation
- ADT window length: $6.8 \mu \mathrm{~s}$
- Limit maximum voltage at injection energy
- Similar margin as for Run 3 and HL-LHC without HEL operation

A more refined model for the beam losses

Integrated beam losses

- More realistic semi-analytical model to compute the losses: integration of the beam distribution with delayed losses spread over 3 turns (fractional part of the tune close to $1 / 3$)
- Few differences except at the loss onset
- No conclusive difference observed for the main results as the loss thresholds are rigidly offset in time

Losses and margins - Run III - 7.5 kV

- Margins are the same for the two models

