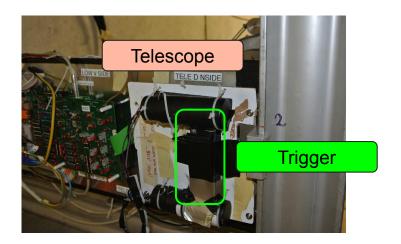
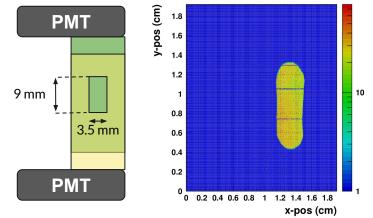

The INSULAb beam test setup

Federico Ronchetti Università degli Studi dell'Insubria - Como, Italy

10th Beam Telescopes and Test Beams Workshop Lecce, June 2022

Outline

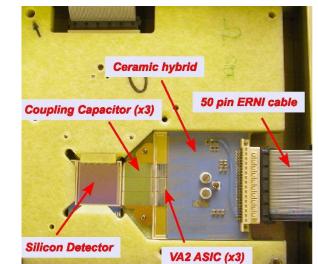

- The INSULAb detectors:
 - Silicon trackers
 - Triggers
 - Calorimeters
- The readout electronics
- The experimental setups during the 2021-2022 beamtests

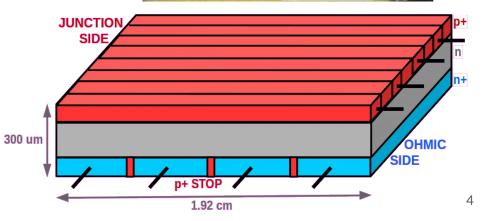


The trigger

Small area trigger

- 2 plastic scintillators (with and without a hole) readout by PMTs
- Anticoincidence to select a small beam spot: 9 × 3.5 mm² → maximize the statistics of the triggered beam
- Ideal for crystals characterization
- Directly mounted on the first beam telescope of the line → easy mechanics and already aligned
- Possibility to select only the no-hole scintillator for a larger triggered beam





The tracking detectors

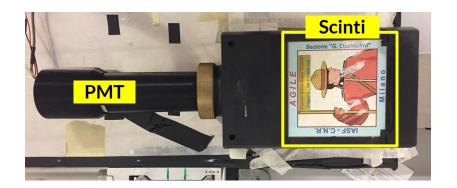
The INSULAb silicon telescopes

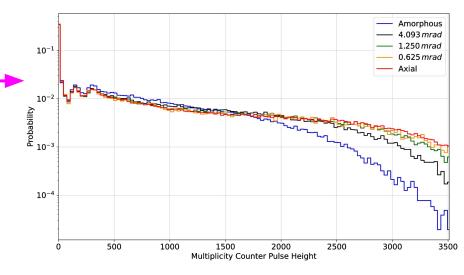
- double side **1.92 cm × 1.92 cm × 300 µm** CSEM sensors → **low material budget**
- 384 channels per side physical pitch is 25µm on junction side (50µm in floating scheme) and 50µm on ohmic side → high spatial resolution (measured at T9, Lietti 2015):
 - \circ Ohmic side = 11.62 ± 0.18 µm
 - Junction side = $5.59 \pm 0.54 \,\mu m$
- full depletion in (36,54)V → low voltage requirement
- Ideal for input beam characterization and **precise beam divergence measurement**

The tracking detectors

The INSULAb Beam Chambers (BC)

- single side AGILE spare sensors → 2 layers per module in XY configuration
- large active area: ~ 9.29 × 9.29 cm²
- 384 channels per side with physical pitch 121 µm and readout pitch 242 µm → spatial resolution is ~ 30 µm
- Thickness is 410 μm per layer \rightarrow 820 μm per module
- **Robustness** and **low voltage requirement** as the double side telescope modules
- Detector, FEB and connections inside an AI box → easy to mount



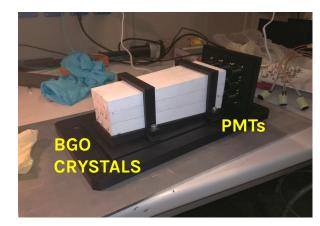


The scintillating detectors

Multiplicity counting

- 10 × 10 × 4 cm³ plastic scintillator, readout by PMT
- PMT with +5V power supply → no HV needed!
- Used as trigger scintillator and to count the particles multiplicity in oriented crystals experiments

The electromagnetic calorimeters

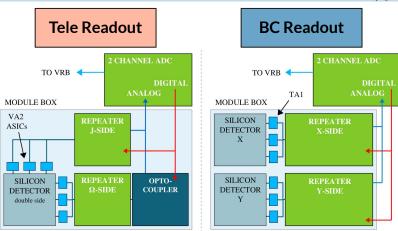

BGO and Lead Glass calorimeters

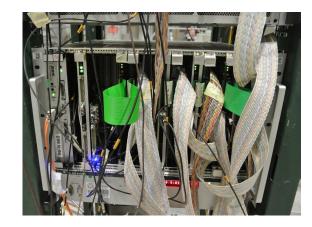
The BGO calorimeter GENNI

- 9 x 2.1 × 2.1 × 23 cm³ **BGO crystals** from the L3 endcap calorimeter
- Readout by **9 Photonis XP1912 PMTs** @850 V
- High energy resolution \rightarrow (3.1±0.3)%/ $\sqrt{E} \oplus$ (2.7±0.1)%

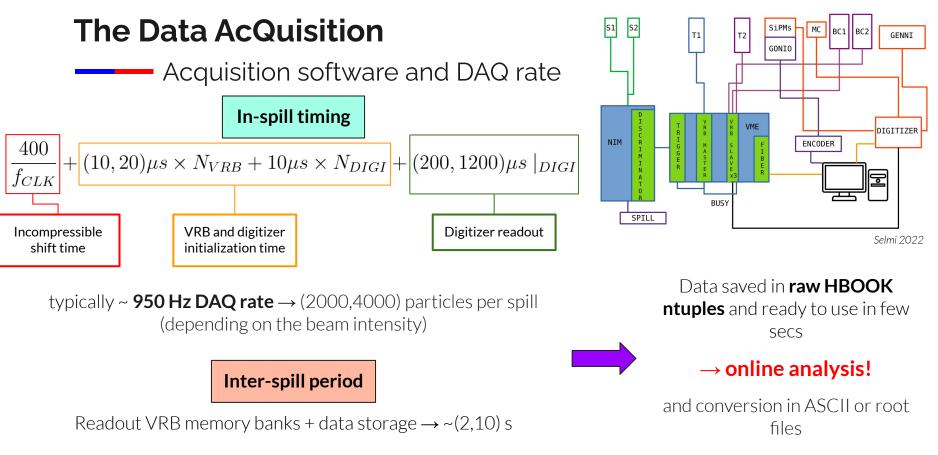
The lead glasses

- OPAL homogeneous Cherenkov lead glass calorimeters
- High energy resolution: **(16.6±0.4)%/√E ⊕ (0.9±0.1)%**
- Up to 7 lead glasses to build an **electromagnetic spectrometer**



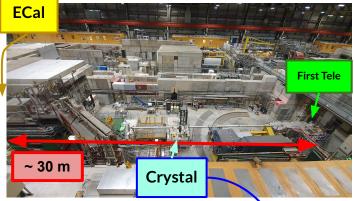

The Data AcQuisition

The readout electronics chain

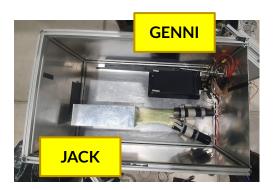

- Silicon detector FEBs:
 - 3 x 128 channels ASICs per side
 - **Repeater boards** \rightarrow ASIC configuration + bias delivery
 - If double side \rightarrow opto-coupler
 - **ADC boards** + communication with the VME boards with flat differential cables
- CAEN V1730 digitizer family → scintillators and calorimeters
- **Custom VME readout boards** → trigger transmission to the detector and output digital signal storage + busy signal for the digitizers
- PC data storage during inter-spill time

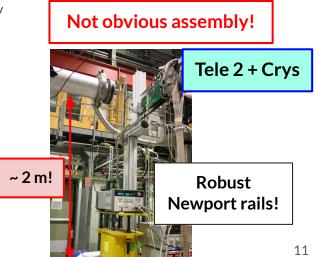
Ballerini 2018

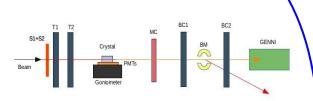
A versatile experimental setup


Different setups used in several beamtests in 2021-2022

- STORM @H2 → electrons @(20,120)
 GeV
- K_LEVER @H2 → electrons @120 GeV
- **SELDOM @H8** → pions @180 GeV
- INSULAb @T9 → electrons @(0.5,6)
 GeV




STORM @H2 line - CERN


Oriented crystal tests

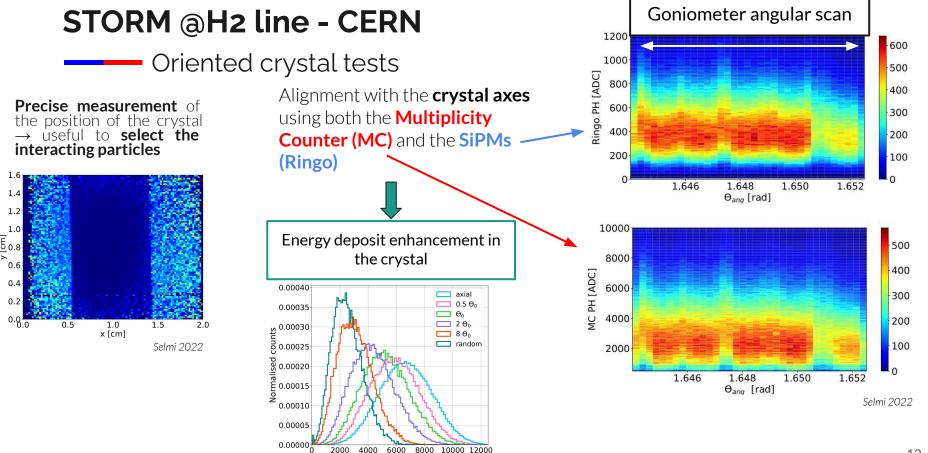
- **Very long setup** → detectors very far from each other
- (20,120) GeV/c electrons for many crystal studies
- High spatial resolution input tracking + output multiplicity and energy measurement

Instrumented crystals

1.6

1.4

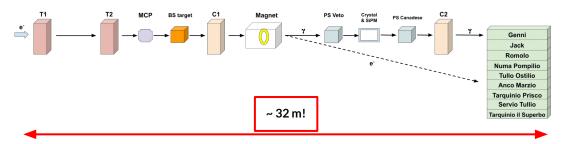
1.2


1.0 ۰.0 8.0 ق ک ۵.6

0.4

0.2

BTTB10, Lecce 2022



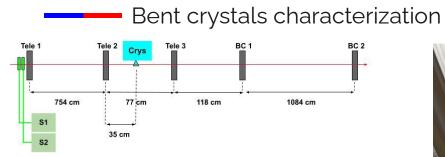
Iohn [ADC]

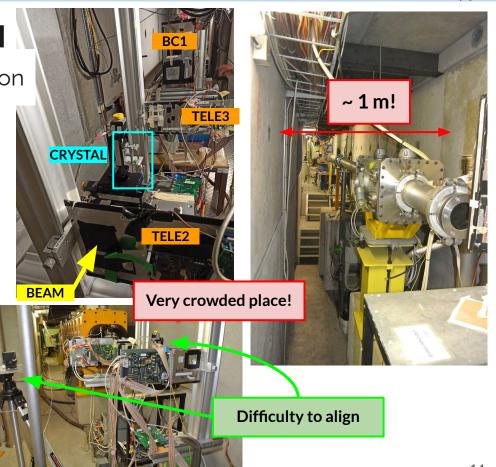
K, EVER @H2 line - CERN


Oriented crystals and tagged photon beam

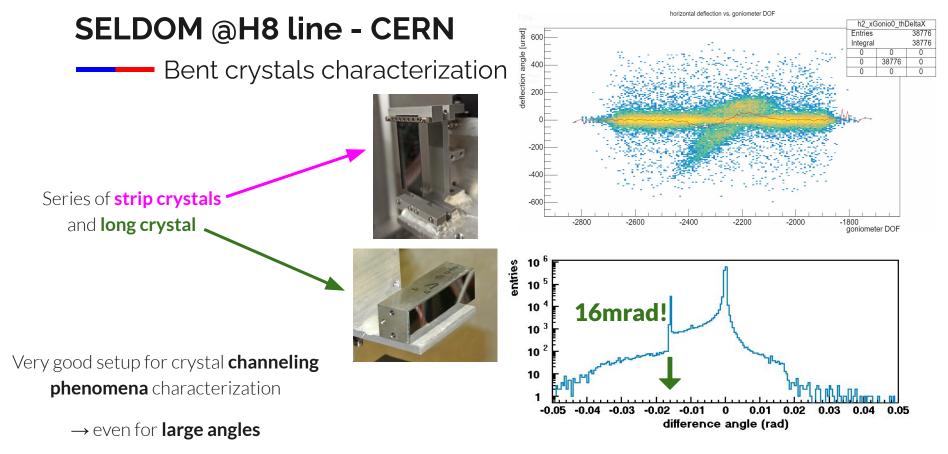
- Setup similar to the STORM one
 - 120 GeV/c electrons for the **production** of **Bremsstrahlung photons** \rightarrow characterization of instrumented PbF₂ oriented crystals
- Large number of detectors and electromagnetic spectrometer → several digitizers in the DAQ

"mini"- scintillators → help for the fine alignment of the crystals



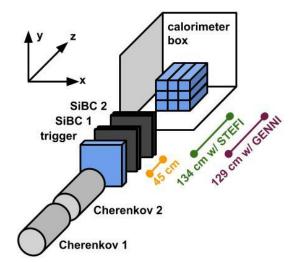

BTTB10, Lecce 2022

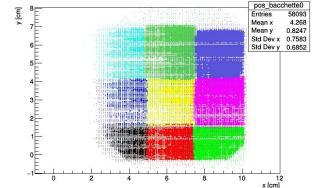
SELDOM @H8 line - CERN



- 180 GeV/c low divergence pion beam
- Experimental setup in the **PPE 128 area of the H2 line**
- No calorimetry, only the **telescopes** in order to characterize **channeling in long (up to 10cm!) bent crystals**
- enormous bending angles, up to 16 mrad \rightarrow output modules (positioned at ~35 cm and ~120 cm from the crystal center) need to be **precise** and to have **large transverse coverage** \rightarrow near small sensor with high spatial resolution (~10µm) and far large sensors with resolution of ~30µm

BTTB10, Lecce 2022




INSULAb @T9 line - CERN

Calorimeters characterization

- **Calorimeter tests** and characterization with electrons @(0.5, 6) GeV
- **Modular simple setup** for tracking and particle ID (T9 line Cherenkov)
- Test of an Active Photon Converter



Conclusions and outlooks

- The **INSULAb beam test setup** is up and running off the shelf and **versatile** for different experimental configurations
- **Modular setup** for an easy installation and for intricate experimental areas
- Wide range of microstrip silicon detectors for precise tracking (σ~5µm) or wide transverse coverage (~10×10 cm² & σ~30 µm)
- Ideal for crystals characterization and detector tests
- **Upgrade of the readout chain** → Gigabit links by fibers or ethernet cables
- Design and development of a **custom digitizer** to replace the commercial ones
- Several **beamtests in 2022** at CERN

Thanks for your attention

CSEM detector specs

Detector	Double
Produced by	CSEM
ASIC	VA2
Detector dimensions [cm ²]	1.92×1.92
Number of readout channels	384
Bulk thickness [µm]	300
Resistivity [kΩ·cm]	> 4
Leakage current [nA/strip]	1.5-2.0
Full depletion bias voltage [V]	36-54
AC coupling	no (150 pF ext. cap.)
p-side - junction	
physical pitch [µm]	25
readout pitch [µm]	50
floating scheme	yes
n-side - ohmic	
physical pitch [µm]	50
readout pitch [µm]	50
floating scheme	no
Fiberglass support	
shape	square
dimensions [cm ²]	12.5×12.5
thickness [cm]	1.0
ASIC connection	direct bonding

ASIC name	VA2
Process (N-well CMOS)	1.2 <i>µ</i> m
Die surface [mm ²]	6.18×4.51
Die thickness [µm]	~ 600
Number of channels	128
Input pad size $[\mu m^2]$	50×90
Output pad size $[\mu m^2]$	90×90
ENC at 1 μ s of peaking time [e ⁻ rms]	$80 + 15 \cdot C_d$
Power consumption [mW]	170
Slow shaper peaking time $[\mu s]$	1-3
Fast shaper peaking time [µs]	not present
Dynamic range [# MIPs]	± 4
Current gain [µA/fC]	~ 25

AGILE detector specs

Item	Value
Dimension (cm ²)	9.5×9.5
Thickness (μm)	410
Readout strips	384
Readout pitch (μ m)	242
Physical pitch (μ m)	121
Bias resistor (M Ω)	40
AC coupling Al resistance (Ω /cm)	4.5
Coupling capacitance (pF)	527
Leakage current (nA/cm ²)	1.5

ASIC name	TAA1
process (N-well CMOS)	0.8um
die surface	5.174mm×6.919mm
die thickness	~600um
nr. of channels	128
input pad pitch	100um
output pad pitch	200um
power consumption	<400uW/channel

Acronyms

- **STORM: ST**r**O**ng c**R**ystalline electro**M**agnetic field
- **K_LEVER: K_L E**xperiment for **VE**ry **R**are events
- **SELDOM: S**earch for the **EL**ectric **D**ip**O**le **M**oment of strange and charm baryons at LHC