Results from latest CALICE AHCal test beams

Antoine Laudrain (JGU, Mainz)

On behalf of the CALICE Collaboration

BTTB 2022 — 24/06/2022

Calorimeters for future colliders

- CALICE: development of calorimeters for future colliders.
- Target hadronic calorimetry with a few % resolution.
 - Not possible using calorimetry alone.
 - Extensive usage of particle-flow algorithms.
 - Requires high granularity.
- → "Imaging" calorimeter: resolve jet components.

Calorimeters for future colliders

• CALICE: development of calorimeters for future colliders.

- Target hadronic calorimetry with a few % resolution.
 - Not possible using calorimetry alone.
 - Extensive usage of particle-flow algorithms.
 - Requires high granularity.
- → "Imaging" calorimeter: resolve jet components.

- AHCal: Analogue Hadronic Calorimeter
 - Plastic scintillator tiles.
 - SiPM readout.
 - Total 8M channels!

The Analogue Hadronic Calorimeter

- 1 board = 36x36 cm² (144 channels)
 - Fully integrated (readout, power supply, calibration LED)
 - 4 readout chips (SPIROC-2), 36 channels each

The Analogue Hadronic Calorimeter

- 1 board = 36x36 cm² (144 channels)
 - Fully integrated (readout, power supply, calibration LED)
 - 4 readout chips (SPIROC-2), 36 channels each
- 1 channel =
 - 1 SiPM (Hamamatsu S13360-1325)
 - 1 scintillator tile (30 x 30 mm², 3 mm thick), polystyrene.
- Individually wrapped in reflective foil, and glued on PCB.

Technological prototype: 2018 TB @ SPS (CERN)

← Beam:

- Muons
- Electrons, 10-200 GeV
- Pions, 10-200 GeV

Total: ~100M events

Test-beams @ CERN SPS in 2018:

- 38 layers (72x72 cm²: 4 boards each) with 1.7 cm steel absorber (4λ)
- ~ 22'000 channels, < 1‰ dead channels
- Very stable running, basically noise-free!

Technological prototype: 2018 TB @ SPS (CERN)

← Beam:

- Muons
- Electrons, 10-200 GeV
- Pions, 10-200 GeV

Total: ~100M events

- Test-beams @ CERN SPS in 2018:
 - 38 layers (72x72 cm²: 4 boards each) with 1.7 cm steel absorber (4λ)
 - ~ 22'000 channels, < 1‰ dead channels
 - Very stable running, basically noise-free!
- Since then, many more TB @ DESY with smaller & more dedicated setups.

Megatile concept

Assembly of such large scale prototype demonstrated, but tedious. => How to improve?

- Build one single 36x36 cm² tile.
- Cut trenches and fill with optical insulation.
- Pour flowing glue + TiO₂ mixture → reflectivity.
- Optimal angle: 30°, minimise dead area.

Megatile concept

Assembly of such large scale prototype demonstrated, but tedious. => How to improve?

- Build one single 36x36 cm² tile.
- Cut trenches and fill with optical insulation.
- Pour flowing glue + TiO₂ mixture → reflectivity.
- Optimal angle: 30°, minimise dead area.
- Glue reflective foil sheet directly on the megatile (with laser-cut holes for SiPM)
- Air gap (<100 µm) to ensure total reflection.

Dimple

- No change to SiPM:
 - Same electronics boards.
 - Same readout.

Optical Trench

(TiO2 + Glue)

Megatile concept

Assembly of such large scale prototype demonstrated, but tedious. => How to improve?

- Build one single 36x36 cm² tile.
- Cut trenches and fill with optical insulation.
- Pour flowing glue + TiO₂ mixture → reflectivity.
- Optimal angle: 30°, minimise dead area.
- Glue reflective foil sheet directly on the megatile (with laser-cut holes for SiPM)
- Air gap (<100 µm) to ensure total reflection.
- • No dead area!
- de Easier assembly.

Dimple

In real life:

Optical Trench

(TiO2 + Glue)

Disclaimer:

Focus here on 2021/2022 beams.

See <u>BTTB 2021 talk</u> for previous results.

No dead area!

- Using the beam telescope in DESY test beam to pin-point particle trajectories:
- Precise positioning of particles => very fine scan of the transition between two channels.

Beam

September 2021

No dead area!

- Using the ALPIDE telescope (+ AIDA TLU) in DESY test beam to pin-point particle trajectories:
- Precise positioning of particles => very fine scan of the transition between two channels.
- Hit efficiency map: given a track in the telescope, was it detected in the tile layer?

Individual tile layer:

100% inside, 50% between tiles

Scanned area

Megatile layer:

100% everywhere.

Megatile's last challenge: edge coating

- High and uniform light-yield, except for the edge channels (~30–50% lower).
- Reason: coating of edge channels is difficult.
 - Baseline solution: stick an auto-adhesive reflective foil, but limited improvement.

Megatile's last challenge: edge coating

- High and uniform light-yield, except for the edge channels (~30–50% lower).
- Reason: coating of edge channels is difficult.
 - Baseline solution: stick an auto-adhesive reflective foil, but limited improvement.
 - Improved solution: spray a white varnish.
 - Up to perfect light-yield performance recovery, yet with large efficiency variation. Encouraging!
 - Under final developments.

Megatile performance

High and uniform light-yield: ~30 p.e. / MIP

Low cross-talk, under control: ~1.5 %

KLauS ASIC

- Active development of new ASIC (Uni Heidelberg).
 - Version 6 currently under test.
 - Target 100 ps time resolution,
 - Power pulsing, low power
 - 2 gain paths,
 - Spill mode for acquisition
 - Optimised for low gain SiPMs.
- More versatile design than SPIROC2.
 - → Enable continuous data-taking.

Same as baseline ASIC

KLauS6 (5x5 mm²)

One KLauS-5 full-size HBU (144 channels) is available => combined test!

DESY, October 2021

- Combined KLauS + Megatile & SPIROC layers test beam.
- Main goal: synchronisation between SPIROC and KLauS.

Setup and testbeam plan

- Combined KLauS + Megatile & standard layers test beam.
- Main goal: synchronisation between SPIROC and KLauS layers.

KLauS hit correlated!

Good space and time correlations observed!

Very latest results

Test beam at CERN-SPS 08-22/06 (last week!). Combined AHCAL + SiW-ECAL

- Combined DAQ
 - Using EUDAQ-2.
- Efficient data taking with beams of
 - Muons 150 GeV
 - Electrons 10-150 GeV
 - Pions 20-200 GeV
- Suffered from issue on extraction line for several days, but physics program mostly completed!

O(10 M) events collected

Synchronisation between AHCAL & ECAL

Time correlation between AHCAL and ECAL achieved!

ECAL6 ECAL8 ECAL11 ECAL12 AHCAL1 AHCAL6 AHCAL7

ECAL₁

ECAL2

Difference of BCID between AHCAL or ECAL layers and reference time for each event, (example for a few ECAL layers).

Summary and future

- Long journey since the 2018 test beam of the 22'000 channel prototype!
 - Development of the Megatile to improve scalability of assembly while maintaining high performances.
 - Development of the more versatile KLauS chip.
- Many smaller-scale test beams at DESY. In 2021: 2 successful test beams!
 - Confirmed Megatile design has no dead area.
 - Confirmed Megatile cross-talk in under control.
- Megatile is a great design for the future!
- First KLauS + SPIROC chips combined running, first KLauS + Megatile coupling! Successful!
- In 2022, test beam at CERN: just finished!
 - First hadron beam (and high-energy electrons) for the Megatile.
 - First AHCAL + ECAL combined runs in beam!!! Very successful!

- Short term wishes:
 - KLauS-6 full size HBU with Megatile.
 - Side-by-side negatives to study transition region.
 - More beam at CERN for standalone AHCAL.

Thank you for your attention!

BACKUP

AHCAL prototype operation (intro)

- Designed for very low duty cycle of ILC machine
 - <1 ms spill followed by 199 ms idle
 - Bunch Crossing (collisions) within acquisition every few hundreds of ns
 - Separate power for Acquisition, Conversion and Readout stages
 - → significant reduction of power & **heat dissipation**
- The SPIROC ASIC has 16-events deep analogue memory cells,
 - store the signal amplitude (High & Low gain) + TDC value for all channels
 - 1728 capacitors!
 - Converted after acquisition
- Hits are **self-triggered** (discrimination typically at the level of several single-photo-electrons) → Hits are **not** triggered externally
 - Event *validation* (everything not validated is rejected) is possible order to reduce the noise occupancy
 - → not needed and not used since 2018 due to very low-noise SiPMs (typical 0.1-0.2 Hz / Tile, incl. cosmics)
- ILC timing is inefficient with CERN/DESY Beams → need some tricks for TB
 - Acquisition phase is prolonged to 16 ms
 - Acquisition phase is stopped earlier if any asic fills its all memory cells (propagation via "busy" signal)
 - Wait until all modules are done with readout, then restart immediately
- Acquisition rate strongly depends on particle type, hit occupancy and beam rate
 - Typical achieved data taking rate in TB mode is **hundreds evt/s** (100-800 evt/s)
 - Maximum acquisition duty cycle in TB mode: 90% (cosmics)
- Effort put into **combined data-taking** and hardware/software synchronisation with other detectors
 - Calice ECAL, Mimosa Telescope, eudet-TLU, AIDA-TLU, CMS-HGCAL, mini-TLU
 - Intrinsically, events are addressed by an Acquisition cycle & BXID
 - → External timestamping and trigger counting implemented in the DAQ concentrator card ("LDA")

The Megatile experience

- Project started in 2017.
- Already 10 prototypes built with continuous improvement.

The Megatile experience

Cosmic test stand @ Mainz detector lab

- Project started in 2017.
- Already 10 prototypes built with continuous improvement.

 Continuously tested in cosmic test stand @ Mainz.

The Megatile experience

Cosmic test stand @ Mainz detector lab

- Project started in 2017.
- Already 10 prototypes built with continuous improvement.

- Continuously tested in cosmic test stand @ Mainz.
- Already 5 test beams @ DESY II

Megatile: cross-talk analysis

1. Central tile defined as Megatile channel aligned with two single tile channels in coincidence.

- 2. Cut on central tile p.e. (select only high energy events).
- 3. XT < [pe in neighbour] / [pe in central]

bottomunannei 221

Megatile: cross-talk analysis

Cuts:

- Exactly 1 hit in each single tile layer.
- Hit energy in single tile layer > 0.7 mip.
- Energy in neighbour < 0.7 mip.
- Energy in central > 0.5 mip.

