

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire

European Research Council Established by the European Commission

MONDLITHÍ) - Picosecond Time Stamping in Fully Monolithic Highlygranular Pixel Sensor

Matteo Milanesio on behalf of the MONOLITH team

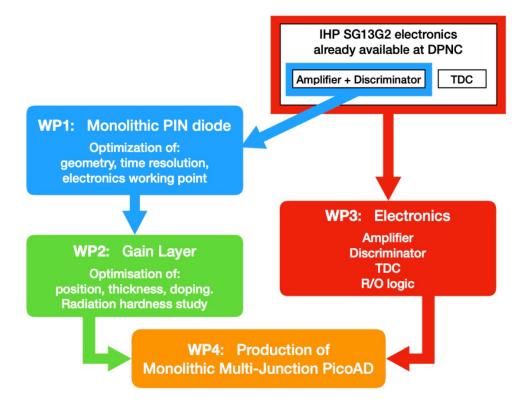
10th Beam Telescopes and Test Beams Workshop, Lecce

FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire


Outline

Established by the European Commission

- The MONOLITH ERC Project
- Gain Measurements
- Test Beam Measurements
 - Experimental setup
 - Efficiency
 - Time Resolution

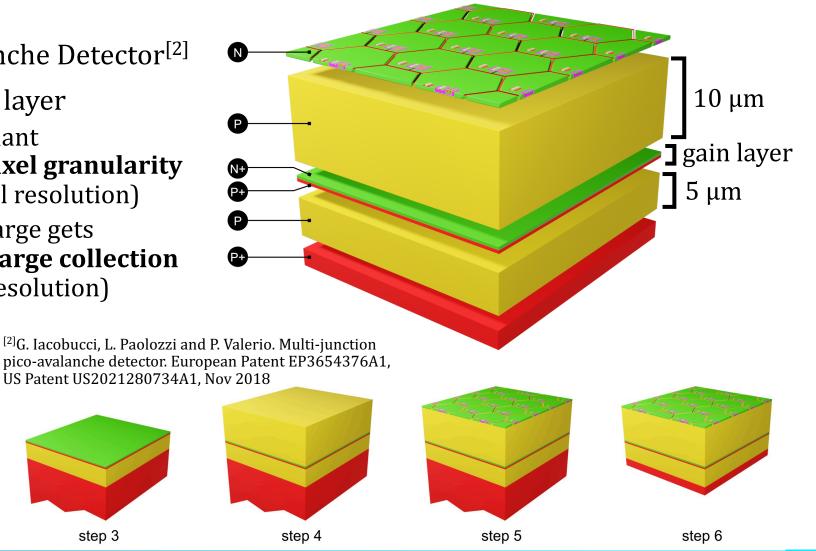

The MONOLITH ERC Project

 Funded by the H2020 ERC Advanced grant 884447^[1], July 2020 - June 2025

- Monolithic silicon sensor able to:
 - measure precisely the 3D spatial position of charged particles
 - provide picosecond time resolution
- Fast and low-noise **SiGe BiCMOS** electronics
- Novel sensor concept, the Picosecond Avalanche Detector

^[1]MONOLITH H2020 ERC Advanced Project Web Page https://www.unige.ch/dpnc/en/groups/giuseppe-iac obucci/research/monolith-erc-advanced-project/

PicoAD Sensor Concept

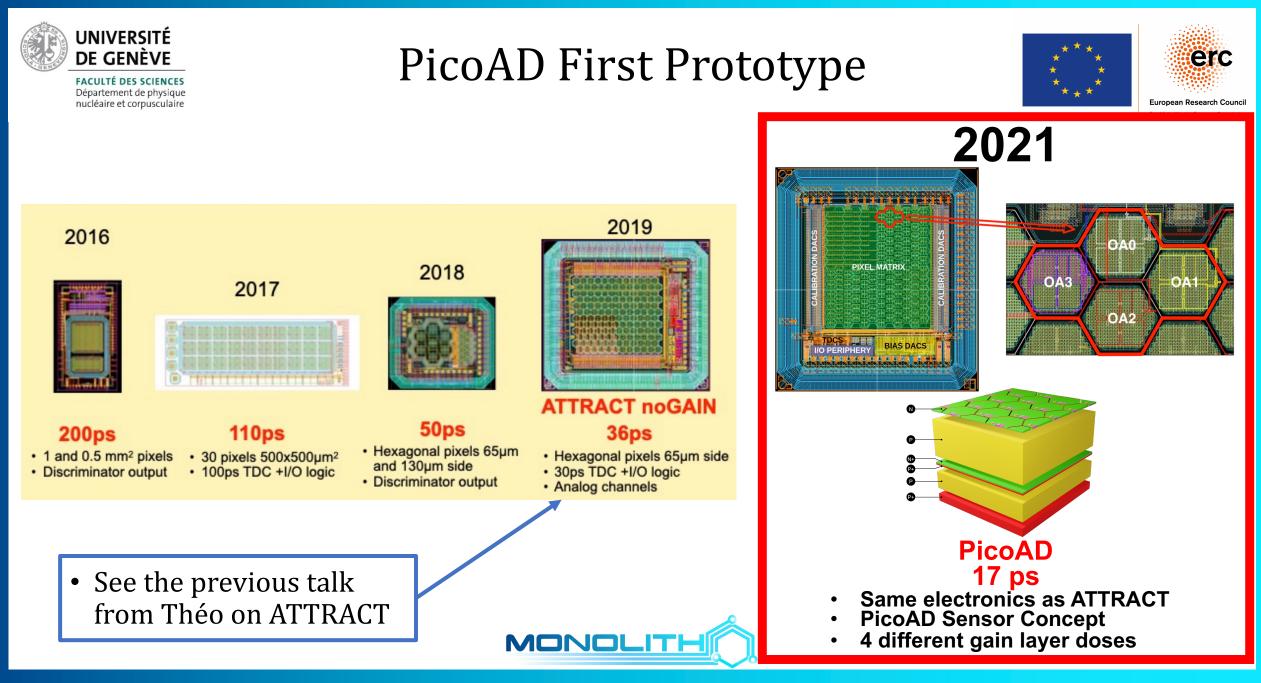


Established by the European Comm

Multi-Junction Pico-Avalanche Detector^[2]

- Continuous and deep gain layer
 - de-correlation from implant size/geometry -> high pixel granularity possible (enhance spatial resolution)
 - only small fraction of charge gets amplified -> reduced charge collection **noise** (enhance timing resolution)

step 2



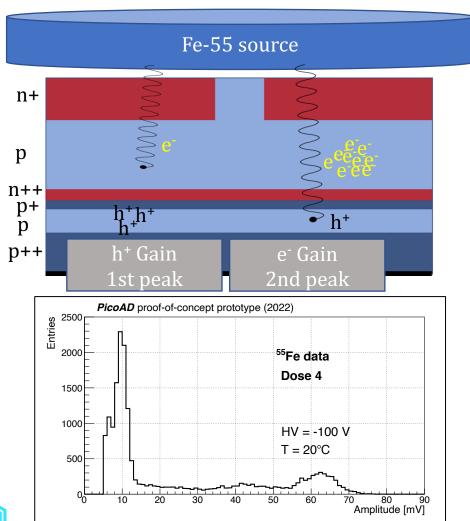
22/06/22

step 1

10th BTTB, Lecce - Matteo.Milanesio@unige.ch

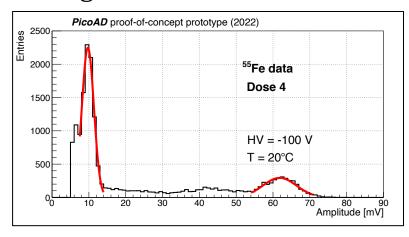
step 3

Département de physique nucléaire et corpusculaire

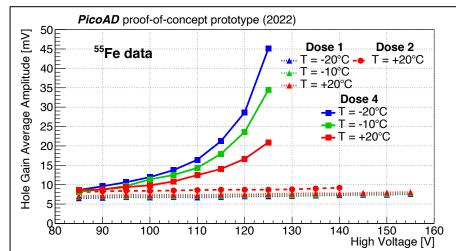

Gain Measurements

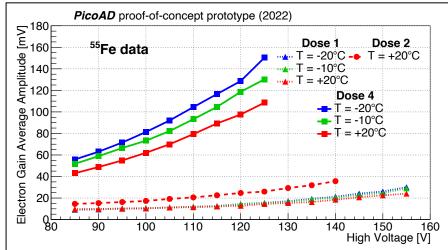
• ⁵⁵Fe radioactive source:

- mainly ~5.9 keV photons
- point-like charge deposition
- Characteristic double-peak spectrum
 - photon absorbed in the drift region
 - -> holes multiplication
 - -> **first peak** in the spectrum
 - photon absorbed in the absorption region
 - -> electrons multiplication
 - -> **second peak** in the spectrum

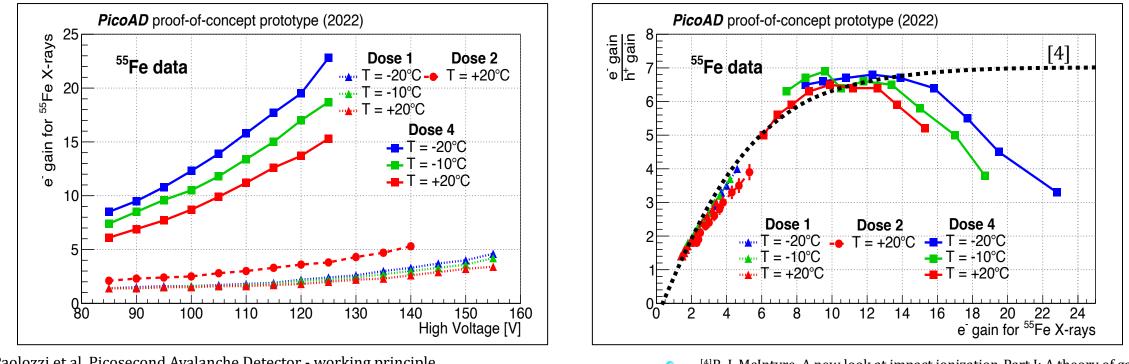


First and Second Peak




• The average amplitudes of hole and electron gains are extracted with a gaussian fit around the local maximum

- Assumption of no gain multiplication when:
 - the photon is absorbed in the drift region
 - the voltage is the lowest (85 V)
 - the dose is the lowest (dose 1)
 - -> normalization value



Gain Results

- A gain for ⁵⁵Fe X-rays of ~20 is reached at HV = 120 V and T = -20 °C^[3]
- Evidence for gain suppression due to space charge effects

^[3]L. Paolozzi et al. Picosecond Avalanche Detector - working principle and gain measurement with a proof-of-concept prototype. arXiv:2206.07952v1, June 2022

MONOLITH

^[4]R. J. McIntyre. A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response. *IEEE Transactions on Electron Devices*, vol. 46, no. 8, pp. 1623-1631, Aug. 1999

Département de physique nucléaire et corpusculaire

Test Beam Experimental Setup

European Research Council Established by the European Commission

- CERN SPS Testbeam with 180 GeV/c pions
- **UNIGE FE-I4 telescope**^[5] to provide the spatial information
- **Two LGADs** ($\sigma_t \sim 35 \text{ ps}$) to provide the timing reference (and two SPADs with $\sigma_t \sim 20 \text{ ps}$)
- **Efficiency** and **timing resolution** measured as a function of:
 - High Voltage
 - Power consumption (related to preamplifier current)

^[5]Benoit et al. The FE-I4 telescope for particle tracking in testbeam experiments. JINST, 11 P07003, july 2016

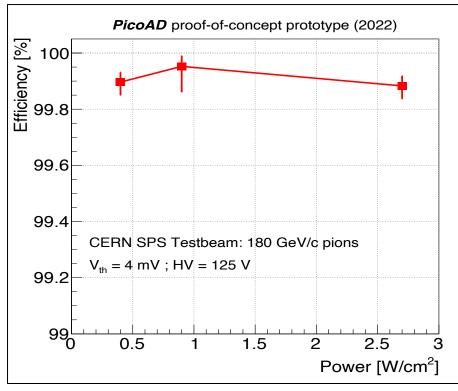
Efficiency Maps

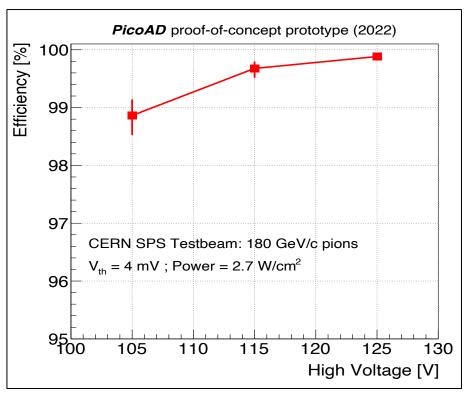
Established by the European Commis

CERN SPS Testbeam: 180 GeV/c pions PicoAD proof-of-concept prototype (2022) $V_{th} = 4 \text{ mV}$; HV = 125 V; Power = 2.7 W/cm² Track position y [mm] Track position y [mm] Efficiency Efficiency 0.9 3.1 3. 0.8 0.99 3.05 0.7 3.05 0.6 0.98 3 0.5 0.97 0.4 2.95 2.95 0.3 0.2 0.96 2.9 2.9 0.1 \mathbf{O} 0 2.85 2.85 0.95 -3.95 -3.9 -3.85 -3.8 -3.75 -3.7 -3.65 -3.95 -3.9 -3.85 -3.8 -3.75 -3.7 -3.65 OA2Track position x [mm] Track position x [mm]

 The apparent degradation at the edges is due to the finite resolution of the telescope (~10 μm)

- Selection of two **triangles**:
 - representative of the whole pixel
 - unbiased from the telescope resolution


Efficiency Scans



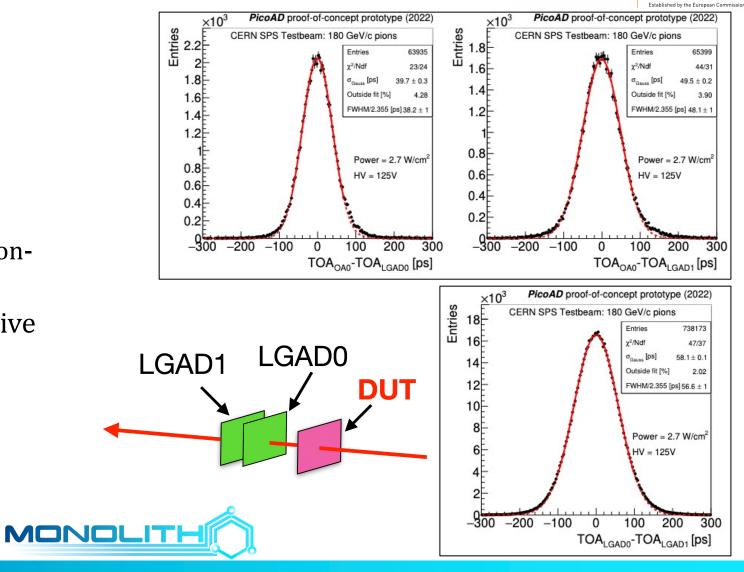
erc

• Efficiency inside the two unbiased triangles

• The efficiency is compatible with 99.9% for all the power consumptions

 The efficiency drops to ~99% for HV=105V

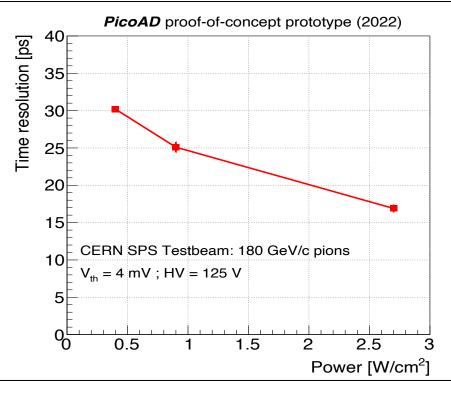
MONOLITH

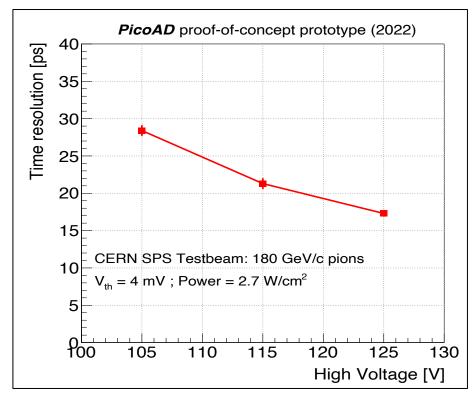

Timing Resolution Distributions

• Time Of Arrival as a time at a Constant Fraction

- Distributions after time-walk correction
- The distributions are **gaussian**
 - ~2-4 % of the entries are in nongaussian tails
- The three σ_{Gauss} from the fits give the timing resolution of:
 - the DUT
 - the two LGADs

Département de physique nucléaire et corpusculaire


Timing Resolution Scans

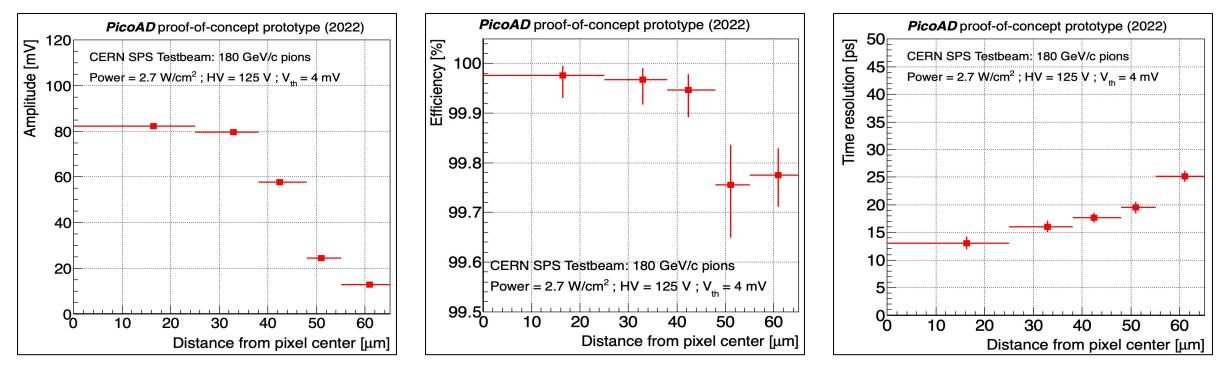


Established by the European Commission

• Timing resolution for pixel 0

• The timing resolution is ≤30 ps, even for the **lowest power consumption**

• The best value is (17.3 ± 0.4) ps


Département de physique nucléaire et corpusculaire

Results vs. Position Within the Pixel

erc

uropean Research Counci Established by the European Con

- Small degradation of the performance towards the edge of the pixel
- Effect of the finite resolution of the telescope convoluted with the real degradation
- The best timing resolution is (13.2 ± 0.8) ps within 25 µm from the pixel center

Summary and Outlook

- Proof-of-concept of PicoAD sensor (not yet optimized for timing) and HBT frontend:
 - gain for ⁵⁵Fe X-rays of up to 23
 - efficiency ~ 99.9 %
 - time resolution $\sigma_t = (17.3 \pm 0.4) \text{ ps}$
 - $\sigma_t = (13.2 \pm 0.8)$ ps within 25 µm from the pixel center
- Ongoing activities include:
 - optimization for timing of the sensor design with TCAD
 - design of smaller pixels pitch and thicker active layer to achieve ≤ 10 ps
 - development of picosecond TDC^[6] for fully monolithic chip

^[6] R. Cardarelli, L. Paolozzi, P. Valerio and G. Iacobucci, European Patent Application / Filing - UGKP-P-001-EP, Europe Patent EP 18181123.3. 2 July 2018.

FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire

Thanks for your attention

Many thanks to the CERN SPS Test Beam Personnel

The MONOLITH team

Giuseppe lacobucci • project P.I.

- System design

Didier Ferrere

- System integration
- Laboratory test

Pierpaolo Valerio Lead chip design

Digital electronics

Mateus Vicente System integration

Laboratory test

Yana Gurimskaya Radiation tolerance Laboratory test

Stefano Zambito Laboratory test

Lorenzo Paolozzi Sensor design Analog electronics

Sergio Gonzalez-Sevilla

System integration

Laboratory test

Magdalena Munker

 Sensor design Laboratory test

Roberto Cardella

Sensor design Analog electronics

Yannick Favre Board design RO system

Théo Moretti Laboratory test

Chiara Magliocca Laboratory test

Matteo Milanesio · Laboratory test

Jihad Said

Laboratory test

Main research partners:

Antonio Picardi

Laboratory Test

Chip design

Roberto Cardarelli INFN Rome Tor Vergata

Marzio Nessi **CERN & UNIGE**

Bernd Heinemann IHP Mikroelektronik

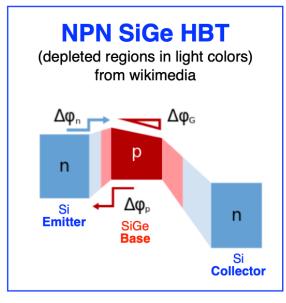
Holger Rücker IHP Mikroelektronik

FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire

Established by the European Commission

Backup

SiGe BiCMOS Technology



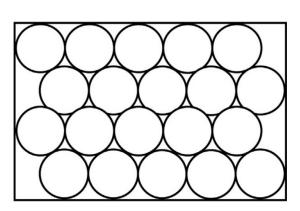
SiGe HBT = BJT with Germanium as base material:

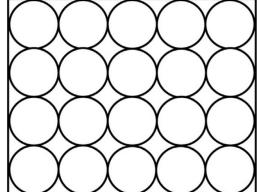
- higher doping in base possible
- thinner base •
- reduced base resistance R_h
- Grading of Ge doping in base: •
 - charge transport in base via drift
 - reduced charge transit time in base
 - high current gain β
- Leading-edge technology IHP SG13G2, • 130 nm process featuring SiGe HBT

 $ENC_{series noise} \propto \sqrt{k_1 \frac{C_{tot}^2}{\beta} + k_2 R_b C_{tot}^2}$

Département de physique

nucléaire et corpusculaire


Benefits of Using Hexagonal Pixels



European Research Council Established by the European Commission

- Three possible regular shapes to use:
 - equilateral triangles
 - squares
 - regular hexagons
- Hexagons have the highest angles (120°) -> electric fields in the corners are better under control
- Moreover, the same amount of pixels can fits in less space than squares

Département de physique nucléaire et corpusculaire

Time Walk Correction

Established by the European Comp

700 OA_{OA0}-TOA_{LGAD0} [ns] 400 [ns] rod_{oa0}-TOA_{LGAD0} [ns] 200 ALGAD1 0.8 0.8 350 _(600 180 OA0-TO/ 160 0.6 300 0.6 500 <u>0</u> 140 250 0.4 0.4 400 120 200 100 0.2 0.2 300 80 150 200 60 100 -0.2 -0.2 40 100 50 20 -0.4 -0.4-1.4 80 100 120 Amplitude_{OA0} [mV] 16 18 20 35 20 40 60 Amplitude Amplitude [mV]

- Shift at 200 ps of the waveform to subtract low-frequency noise
- Time at 25% constant fraction
- Amplitude based time walk correction method

