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A little bit of history

A basic question:

Is there any electromagnetic radiation coming from charged particles moving with a
constant velocity?

Arnold Sommerfeld

In 1903 Arnold Sommerfeld considered a uniform motion of a charge in vacuum and came
to the conclusion that it radiates at a velocity exceeding that of light (V > C)!
[A. Sommerfeld, Nachr.,Math.Phys.Klasse, (2) 99, (5) 363 (1904); (3) 201 (1905)].

But in 1905 a special theory of relativity was invented which postulates the low: V is
always < C. And Sommerfeld's idea was discarded at that moment because a charge
cannot propagate at a speed higher than C.

If at that moment physicists knew that in media a phase speed of light is less than
C the Cherenkov radiation could have even been predicted by a student in the last | yegunwin k 4 Normal to the wav front
years of secondary school, familiar with the fundamentals of optics. refactive ’

. /
index n 7T Wave front
SN Source

It follows, from Hyugens'’s principle according to which each point on the path of a rooa Vo i)
charge moving with speed v is a source of a spherical wave emitted as the charge —
passes the point.

Also Mach shock waves analogs of this radiation were well known.
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A little bit of history

For the first time Cherenkov radiation was observed by P Curie and M Curie in bottles with radium
salt solution but it was ignored at that time.

In 1932 a PhD Pavel Cherenkov under a supervision of Sergey Vavilov (world leading physicist in a
study of luminescence phenomena at that time) was intended to study of a luminescence of a
uranyl salt solutions caused by gamma-irradiation (it was a subject of his PhD thesis of Pavel

Cherenkov). Cherenkov happened to observe (by eye!) that the fluid (sulphuric acid) was luminous

even in the absence of a solute which cause luminescence.
This led him to believe that his further work on should be given up as a bad job.

Pavel Cherenkov

That was S. Vaviolov who understood that the observed radiation is something else than
luminescence. Further studies proved that lead to a the discovery of a previously unknown
phenomenon [Cherenkov P A ,Comptes Rendus Acad. Sciences USSR 2 451 (1934), Vavilov S |, Comptes Rendus
Acad. Sciences USSR 2 457 (1934)].

That is why in Russian books this irradiation is very often called Vavilov-Cherenkov.

llya Frank Igor Tamm

This discovery happened in Physics Institute of the Academy of Science (Moscow) where there
was a big theory physics department with many brilliant physicists who immediately started to
explore a new land of physics.

The nature of this radiation was explained in 1937 by Igor Tamm and lliya Frank [Tamm | E, Frank | M
Dokl. Akad. Nauk SSSR 14 107 (1937) [CR Acad. Sci. USSR 14 107 (1937)]
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A little bit of history

llya Frank Igor Tamm

Arnold Sommerfeld

Tamm and Frank forwarded a preprint of their paper to Sommerfeld and
who answered of 8 May 1937 via Austria (Nazis were already in power):

"I never thought that my calculations made in 1903 could ever have
any physical implication. This confirms that the mathematical aspect
of a theory outlasts changing physical concepts.”

Let’s move to the translon radiation now!

Vitaly Ginzburg llya Frank

These studies attracted attention of young physicists Vitaly Ginzburg who started
to ask him self “Cherenkov radiation appears when charge moves in the uniform
media but what if the media is not uniform? For instances:

What would happen if moving charge crosses the boundary of two media with
different velocities of the propagation of electromagnetic waves.

Together with llya Frank they considered the example of an electron
moving from the vacuum into an ideal conductor.
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A little bit of history

For the charge the metal is an ideal mirror.

Simple considerations tell:

The field of the charge in vacuum is a sum of the fields of the charge g moving in the

vacuum in the absence of the mirror and its "image” charge —q moving in the mirror
toward the charge q (i.e., with the velocity —v).

When charge q crosses the metal boundary, it falls into a conducting medium and
ceases to produce a field in the vacuum; the image —q also disappears. Thus, from
the viewpoint of an observer in the vacuum, the annihilation of the pair of charges q
and —q occurs at the instant of crossing the boundary.

I. Ginsburg and |. Frank described this process in their work:

“"Radiation of a uniformly moving electron, arising when the electron passes from one medium into
another" for publication to Ginzburg V L, Frank | M Zh. Eksp. Teor. Fiz. 16 15 (1946); J. Phys. USSR 9
353 (1945) (brief version)

In this publication they predicted the existence of a new type of
electromagnetic radiation, which they called "Transition Radiation”

This phenomena happens at any speed of moving charge.
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A little bit of history

However, if you are charge or pretty enough any surface becomes a mirror!
And TR is produced at any case when boundary with different refractive indices

v

are crossed.

L\
W
1, iy
1,

The production of TR in a stack of plates was considered by G. Garibian

In 1959 it was found that, for ultra-relativistic particles, high-frequency TR (in X-ray range)
is produced (that is why sometimes it is called XTR) in forward directions and its intensity

strongly depends on a particle gamma factor. [G. M. Garibyan, Zh. Eksp. Teor. Fiz. 37, 527 (1959)

[Sov. Phys. JETP 10, 372 (1960)]; G. M. Garibyan and Yan Shi, X-ray Transition Radiation (Akad. Nauk Arm
SSR, Yerevan, 1983)].

Artem Alikhanian and his collaborators from Armenia made first XTR observations and
investigations (years 1961-70)
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Transition radiation: basic principles

TRD reviews: NIM, A326 (1993) 434-469, NIM, A666 (2012) 130-147 , Review of Particle Physics, PTEP, v. 2020 issue 8.

TR theory well developed. One of the approach often used described in M. Cherry et al. Phys. Rev. D 10 (1974) 3594.
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Transition radiation: basic principles
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Transition radiation: TR production

TR absorption sets a strong limit on a number of photons coming from the radiator.
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High-threshold probability

Transition radiation: the most important TR parameters
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Basic approach for any detector:

Theory - Simulation model - Prototype - Corrections of the
detector model & Detector optimization, design and production.

How well TR can be simulated?

PHOTONA  SENSOR +
RIS ks Beam tests wth TimePix3 front-end chip attached to Si

or GaAs sensors.

CHARGE \ \

\ NIM, A 961 (2020) 163681
CLOUDS | = e -« J. Phys.: Conf. Ser.,1690 (2020), 012041
BUMP =, S READOUT
BOND§;, T - - ELECTRONICS

%Z §7 Timepix3 front-end hybrid pixel readout chip:

Various sensor materials possible.

Simultaneous per-pixel measurement of a time-of-arrival (ToA) and
the time-over-threshold (ToT).

Time resolution of 1.56ns and

Spatial resolution of ~16um

256 x 256 pixel matrix with 55 x 55 pm2 pitch

throughput of up to 40 Mhits/s/cm2
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Data/MC comparison. Si sensor.

NIM, A 961 (2020) 163681

Data

Data

2z = 2 _ Data _
S K] S = 35 2 >
5 3 s S g 2
5 3 & < 2 3
100 8 109 3 s 3
- < - o 3 ]
5 < 5 c 107 13
2 5 ° 2 s 2
3 3 3 5 P s
E & g 2 g 2
z z T E T
10+ 10+ |z
10
- e -
2 10 35 4 10 2 10
6 (mrad) 0 (mrad) 35 4 35
0 (mrad) 0 (mrad)
£ 3 H < | -
g & 2 S 2 S
£ 3 £ e g &
0% 2 10°E 3 i 3
5 ° 5 g g8
5 5 Ll
E 2 2 < 5 <
E £ E g 3 g
5 o s 5 2 5
z z g £ £
104 10 2
10"
" i - by "
5 1 0 05 1 15 2 25 8 35 4 0 e :
0 (mrad) 6 (mrad) 35 4
Data 6 (mrad) 6 (mrad)
e g s 2
' g ¢ g < — . S —
2 = 2 s 2 =
5 3 5 ] 5 2
0E 2 10°F 5 2 5
- 4 2 -
2 8 2 ° 5 ®
E £ E § = §
2 2 K] g 3
10+ 10 (3 §E &
z
A
~ E % o . 5 & Yol 2 £ 5
05 1 15 2 25 3 85 4 10 0 05 1 15 2 25 35 4 10
o (mrad) 0 (mrad) ~o. 5 2 25 357 35 4

. . . 0 (mrad)
Mylar radiator 50 um, 2.97 mm spacing, 30 foils PE radiator 15.5 um, 222 um spacing, 180 foils

Two-dimensional distributions of TR photon energy (Y) VS production angle

10th Beam Telescopes and Test Beams Workshop, June 23rd, 2022

0 (mrad)

10°

Number of TR photons Number of TR photons

Number of TR photons

13



Electrons
20 GeV

Muons
180 GeV

Muons
120 GeV

Photons per particle (keV™) Photons per particle (keV™)

Photons per particle (keV™)

Data/MC comparison. Si sensor.
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In “thick” detectors the radiator, optimized for a minimum total
radiation length at maximum TR yield and total TR absorption in the
detector. Radiator usually consists of few hundred foils or equivalent

material.
Most of the soft TR photons are absorbed in the radiator itself and

spectrum is shifted to higher energies.
e.g.UA2, NA34, ALICE ...

5 10 15

function of photon energy.

20 25 30
Photon energy (keV)
Fraction for photons passed through the
detectors with different gas thicknesses as a

Important to NOTE:

. The TR and dE/dX losses are
overlapped.

. dE/dX measurements improve PID
at low momentums.

. All modern TRDs provide also
tracking information.

. Both types of doctors are used in
the accelerator and cosmic-ray
experiments
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Fine granular radiator/detector structure exploits the soft part of the
TR spectrum more efficiently. Radiator usually consists of few dozens
of foils or equivalent material.

TR can be registered by several consecutive detector layers. Walls of
the detector layers are made from thing foils and also produce TR.

ATLAS, AMS-2, TRD for Pamela experiment
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ALICE experiment

Dedicated for heavy-ion studies at LHC.
Optimized or Pb-Pb collisions. Particle identification in relatively low particle momentums.
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-

-
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ALICE TRD: thick detector concept
6 TRD layers. Pad readout.
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cathode pads

3

ALICE TRD: thick detector concept

ALIICE: NIM, A881 (2018) 89-127
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ALICE TRD: thick detector concept

ALIICE: NIM, A881 (2018) 89-127
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GSI
Accelerator
Facilities

TRD CBM (FAIR)

CBM: NIM, A 732 (2013) 375-379
CMB TRD TDR: DOI:10.15120/GSI-2018-01091
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TRD for CMB: intermediate detector concept

High rate application. Drift distance reduced to 5 mm.
Pad readout. Total energy is counted

' pion electron
anode \
wires -
cathode amplification i| - el
wires \ region 3 ’
primary : 2 . . !-‘
clusters drift ‘ }‘ ‘
entrance region ‘
window ’ ‘
Radiator T =
30 cm TR photon ® -
/ pion / electron
' Back-panel
é 475 mm 25 mm 3.5 mm Pad group 1 é Pad group 2
E_>' <> * Anode
E 2.5mm 2.5mm 3.5mm
‘_)' <> ¢ Cathode
5.0mm i Drift
: Test beam prototype of large chambers.
Entrance window 4 TRD |ayerS
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TRD for CMB: intermediate detector concept

Performance.

% 2200 z—
8 2000 ;_ without radiator
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Track position and track angle as a function signal
to noise ratio. Pad width 6.8mm.
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ATLAS TRD: thin detector concept

- - . ATLAS ID consists of Pixel detectors, Semiconductor

- = | Tracker and Transition Radiation Tracker (TRT)
[ —_—— =, TRT:

\ ==

" \ ’ 2 ;

\ s
| e L

| %

+ Electron identification for particles with |n|<2 and
0.5 <pr< 150 GeV

+ Continuous tracking.
SR & e Particle momentum measurements.
/ == / /. =12 ‘ —
T Y{r’ : .—n‘/ \ ".‘ ‘,' - ' \ N / \
\‘. § | |II ]‘!'. '. ¢
I i ‘ i —
‘, I\ S A ,v,"" b
i I“‘ / e Toroid r;wgnets

\
‘ \‘ LAr electromagnetic caloy
Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor tracker

L
b Y
I 2111 pawea

TRT PID:
¢ Electron identification

- High Level Trigger
- Offline

¢ Conversion reconstruction

\| Barrel semiconductor tracker
* Electron veto for hadronic t-decays

End-cap semiconductor tracker
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TRT — Straw based detector

radiator straw diameter = 4mm

Polyurethane \ \ (T fibres) } "

rticle

- laye ’ ing P2
yer N travers 9

|4-"’

Carbon-polyimide
Protection layer

\.. sensor (straw tube) '\ < |”\ } :HL_

wire thickness = 30pum
Signal in the detector is a superposition of dE/dX and TR -

Two threshold analysis : Sl e g r et 0 rone with radlator ] N
5.5 keV Pt { Electrons ',-': - e
without radiator K -
0.2keV =—— — / . .
*
- 30 measurement points on track S e
» Space point measurement accuracy ~130 [ ;;': .o .-
mm in each straw (Low Threshold) D e vy
« Separation of particles using High : ya L Lot
Threshold ~6keV (TR) [ ) Y *°
* Use Low Threshold information (ToT) for R LR P . s
dE/dX measurements Differential spectrum of the energy loss in the straw. ..‘:
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ATLAS TRD: thin detector concept
Two different detector design for the Barrel and End-Caps

Operation conditions: End-cap part of the ATLAS Inner Detector
» Particle rate — up 20 MHz

» Particle density up to 500 kHz/cm

» Accumulated charge up to 10 C/cm of
» Current up to 10 pA per wire

» lonization current density ~015 uA

» Total ionization current ~ 3 A

* TRT ionization current power ~5 kW

Radiator:
15 um PP foils with
mesh spacing

Barrel part of the ATLAS Inner Detector

R =1082 mm
end<

TRT

R =122.5mm e — - ' Pixels
Pixels { R = 88.5 mm - s
R =50.5 mm

R=0mm
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detector concept
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ATLAS TRD
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TRT Tracking performance.

Track in the TRT crosses ~ 30 straws. TRT occupancy is one of the problems

3:01|_““1“"1"“|"‘w_| 'Eo1si"‘\""I""\“"\"“\"""““'4 E'014E'|""1"v-w-v‘|v‘w|ww-v -H-_:
© "} ATLAS Preliminary : E 1  ATLAS Preliminary =7 ATLAS Preliminary ]
L Data 2012 ] > 0.14 _ E
008 ° Gmri063:03um &= 109 pm | 3 Foy % 400 o= 120 um ]
L Simulati | EEPNPPN o) B
L G:ATLJ%ESM.um i 8 2 .9999 ."-..:f:oﬁ -".9 NCREE 8 r N . . ]
r Barrel ] S oqE “ e . S 01t s . E
0.061- - c 01 1 c 011 ]
L \s=8TeV S f 1 2 E
L <u>=5-10 ] ng_ 0-08; ? 0—8- 0_1? E
0.04— - r 1 £ 1
r ] 006 |s-8 TeV ] 0'095 \s=8 TeV 1
L ] 0.04 <u>=25-30 = 008 End-caps E
0.02- T F eData2012 ] f eData2012 E
L ] 0.02- o Simulation . 0.07E o Simulation E
. P P n ] P T B I I I D P
3 05 0 05 1 %45 1 05 0 05 1 15 2 10 15
Position residual [mm] n [
Track to drift-radius TRT straw position measurement TRT straw position measurement
residual distribution accuracy as funqtion of accuracy as func_tion average
pseudorapidity number of interactions per bunch
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Entries [normalized to unity]

Anatoli Romaniouk

TRT performance: Electron/pion separation

dE/dX

(52 7TeV ATLAS Preliminary
|dy| > 1 mm .
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TR

2 0350 E
3 E E
& 3L ATLAS Preliminary E
o s B
5 F Data 2010 s = 7 TeV) 3
2 025 <0625 Dot
S 0.2 ® Data, & from Z E =
Q “r ® Data, e” fromy o0 B
ES C 4 Data,n* 53 B
& 0.15 O Simulation, € from Z 2 =
° £ O Simulation, & fromy .8 7
I 0.1 2 Simulation, T o i
E .e E
0050 L uiuesonspunsnissiti® 85 E
E - y factor ]
OF vl vl vl vl il )
1 10 102 10 10t 100 10°
1 10 1 10 10?
Pion momentum [GeV] Electron momentum [GeV]
HT probability of particle
gamma factor
5035:‘ LR RS RN R RS LR RN RARAS AR
§ 0.3- Pions ATLAS Preliminary
ey £ Data 2010
ﬁ 0‘25»_— TRT end-caps
€ o2b 4<p<20GeV
g TR [AEtectron candidates
6 0A15:__ EIPlun candidates
2
S\ 1, Electrons
4
0.05k /) w
2

S il G e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05
High-threshold fraction

Fraction of TR hit on track for

pions and electrons

Pion mis-ID probability (90% elec. eff.)

mis-identification probability

10

P71 S I U N U P PO P P
0O 10 20 30 40 50 60 70 80 90

dE/dX + TR

L L e = SN ELELEMEEU

E ATLAS preliminary B

F @ i * A .

L y i

F S Pt .
A

S aE ToT

N®X HT fraction
7#7. PID combined

p [GeV]
Pion misidentification as a function
pion momentum
"4 TRT End-caps PoPb Data 2011 (W - ) |
A TRT End-caps PbPb Simulation (JA¥ — ) :3:
& TRT End-caps PbPb Data 2011 - UPC A

—A—
HT fraction cut set to value
giving 90% electron efficiency ~ _,_ s
—a——
—a—
—h—

—
EC ]

P, >3 GeV/c; ATLAS for approval
|

TRT Occupancy [%]
Pion misidentification as a
function of TRT occupancy

10th Beam Telescopes and Test Beams Workshop, June 23rd, 2022

29



i

Most often case: ELECTRONS AND
POSITRONS separation from pion and-
proton background

Expected relative abundances: 2 .
. e/p <107
- e'p~10* ‘
: * b 7 "\a O ¢ 4 ; N
Required discrimination at least 107 to 10-° | SIS AT T - =
% : Threshold TRD’s: Electron and Positron Measurements
' (TREE, HEAT, AMS)
e-p rejection requirement 107 to 10° TRD’s for Energy Measurements of Cosmic-Ray Nuclei
(CRN, TRACER, CREAM)
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AMS-02 TRD: Thin detector concept nm 4706, 2013, 43-47

Straws and radiators from the TRT developments

Fleece—Radiator

Straw tube proportional counter modules:

«Straw tubes: 72 ym multilayer aluminium kapton foil,
@6 mm, 0.8 ~2.0 mlength

* Wire: tungsten anode wire, 30 um d, tension =100 g
» Gas mixture: Xe / CO, (80% / 20%) — to be optimized
* Operating HV ~ 1460 V — Gasgain of ~ 3000
* 1 Module — 16 Straws, 100 um mechanical accuracy
» 328 Modules — 5248 Straws

One of 20 Layers

Straws and radiators from the TRT developments %
S . . ¢ Y ;
e e e e R ) e .
6 longitudinal stiffeners Strips across every 10 cm Chosen configuration for 60 cm height:

20 Layers each existing of:
» 22 mm fibre fleece
* @ 6 mm straw tubes (Xe/CO, 80%/20%)

Non-bending plane: 2x4 layers
Bending plane: 12 layers

Anatoli Romaniouk 10th Beam Telescopes and Test Beams Workshop, June 23rd, 2022 32



Anatoli

AMS-02 TRD: Thin detector concept
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TRACER - balloon experiment : intermediate detector concept
TRDs: Lorentz factor measurements.

. TRACER IS BIG:
TRACER Detector System Nrr~ Z2 particle 5 m? area - the largest balloon-

borne cosmic-ray detector
Nucl.Instrum.Meth. A654 (2011) 140-156

“Transition Radiation Array
for Cosmic Eneraetic

transition radiation
detector

7
Vs

* scintillator

N\, Cerenkov counter

TRACER has 16 layers Mylar
straws of 20 mm diameter, 8 for
dE/dx measurement,
and 8 for dE/dx+TR
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TRACER - balloon experiment : intermediate detector concept

TRDs: Lorentz factor measurements.
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TRD for a hadron identification in a forward direction at LHC

J. Phys.: Conf. Ser. 1390 (2019) 012126, J. Phys.: Conf. Ser. 1690 (2020) 012043

The goal is a hadron reconstruction in 1-6 TeV energy range.
The difficulty is close particle masses

Momentum distribution at the IP

-y
o
El

Distribution of positive .
charged particles

NGR) L
o o o
&l £ £l

Log(dN

—
o
™

K

Number per 125 GeV/c bin
dN/dP)

1L

1 ‘ 1 1 1 |
1000 2000 3000
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| 1 1 1 1 | 1 1
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o
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10°
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10

-

Momentum distribution at the IP

Distribution of negative
charged particles -

P

| | \ I
9000 2000 3000 4000
P [GeV/c]

K

L
5000 6000

Fine grained structure which allows to work with soft and hard parts of the TR spectrum (different gamma dependences).

Advantages:
*Use of two TR energy ranges with different gamma dependencies

«Straw walls are a part of the radiator (they produce TR in in the
same energy range) => no dead material, only radiator and gas.

Disadvantages:
*TR and dE/dx cannot be decoupled.
Anaftoli Romaniouk

EEEEERE
SR e
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TRD for a hadron identification in a forward direction at LHC

Expected and reconstructed particle composition of hadrons.

TRTTAETN TN i
IR LRIB LRI
L L Iy

Iterative Bayesian approach: h:> 10’2;

Positively charged particles

How many iterations are required?

Antihadrons. Energy = 1 TeV

Fions

w» Kaons

200

400

2 -1
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TRD for a hadron identification in a forward direction at LHC

All this is possible if you know exact response of the detector!
There are two few caveats here: Space charge effect and photo electron pass in the working volume

Charge density on the wire is maximal in a photon energy range of 8-14

L keV. This causes a drop of the gas gain known and a space charge effect. :
This must be taken into account in simulations. 8-electrons of high energy have a
significant pass in the gas and can go
_ out from the working volume. This
o .
g 90% auger electron probability Relative gas gain vs E(keV) affect the Spectﬂ}m shape and must
B - be taken into account
g _g F T T T T T T T T T ]
2 2 T ]
2] [}
: & I \/
_g ;4 P 2 _% 08 H : H H —
£ Helium +—8- > € oei This effect
o ] T causes a
: . A d ?pecm_‘m . a0, straw wall
10 i i i i i Photon of 10 keV: N eth?;n::tli(();ln ‘é’;j\ré-electron \
0 10 2°E 30 [kev]“’ 0 o0 Photoelectron ~5 keV 02— 9 :
(photon) Auger electrons: ~4 keV + 1 keV the rest r ] BRSNS \
Fig. 5. Position resolution as a function of the photon energy for an “infinite” geom- 05 %‘ * 110‘ 115‘ * 210‘ * 215‘ = '3'0‘ - '3'5‘ = '4'0 = l4'5 * B
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‘What was good Isn’t necessarily
yesterday

Yesterday

New approaches in the TRD development.

10th Beam Telescopes and Test Beams Workshop, June 23rd, 2022
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TRD: where we are now?

TRDs have the largest gamma factor range. Mainly used

well for separation of particles up to gamma factors few*102. TRD length is critical!
BUt it iS not a limit! Particle Data Group, Journal of Physics G 37 (2010) 075021.

s 2 , i & NOMAD
8 TOF THR C RICH dE/dX K N

@ 0.1

. = T E ¢ H.Buttet al.
28 ; & Do
£ 6 ; L + * M.Holder et al.
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2o - L ¥ H.Grissler et al.
S S ~ oy
S o ' 3
38 2001} % ATLAS
2 £ [ @ AMS

1 2 - < ALICE

- = 2 [ 4 PAMELA
= 1 ® NA34 (HELIOS)

S | ®m C.Fabjanetal.
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© 40! 0001 = v A Biingener et al.

« r O ZEUS
s C
= 10—2 Il 1 L :

0 1 1 o 1 00 1000 I 1 1 1 1 1 1 1 1 | 1
10 20 50 100 200
Parucle energy , GeV Total detector length (cm)

What to do?

* TR radiators occupy largest space -> New Radiators!?
* Better TR detection efficiency and better separation from particle ionization -> New Detectors?
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What is the limit for gaseous detectors? Track-to-TR separation limiting space.

Xe/CO, (80/20)

Micropattern detectors based TRDs: Ingrid technology

Ingrid on TimePix2 chip e T T Pions Electrons
T L o 2000 oF
L 1800 ;
°‘4} 1600 04 §
T r ¢ F
§ 02 1400 i 02| )
s 1200 8 F b TR
g I £ b k4
§ T 1000 E ": TR
g—ozg 800 £ 02l
> f 600 > r
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06 200 06/ .
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o
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For close radiator position the TR and dE/dX losses cannot
be separated but track structure is clearly seen.
The main limit is defined by delta-electrons.
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Total ToT (arb. units)

Micropattern detectors based TRDs: Ingrid technology

Row number
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What is the limit for gaseous detectors? Track-to-TR separation using angle

Use a TR production angle?

Drift volume, Xe+CO,|
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Angular resolution is very much limited by diffusion effects
even at 2 m distance!?
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TRD based on semiconductor detectors.

A combination of a precision tracking and a particle
identification in one device!
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TR low energy part | TR high energy part

Why GaAs sensors?

Part of absorbed photons
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Fraction of photons absorbed in 500 um sensor.
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Semiconductor based detectors.

10°

Energy [keV]

Commonly used
0~1 relation is not

accurate!

Fraction of photons per beam particle

E 1 L L L 1 L 1
0 05 1 15 2 25 3 35 4

aL a1

For electrons 20 GeV and specific radiator it is

Lo Beam test 2021 ~1 mrad instead of 0.025 mrad!

- L %4- | =8

—  Cherenvkov He-pipe ; il S : :
TR radiator Timepix3 attached to
500 um GaAs sensor

S e e ——
GaAs detector on the ‘ :
test beam - B 500 PE foils of 35 um spaced by 0.5mm

Also a tracking device! Track position accuracy ~13 um
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Si and GaAs sensors on TimePix3 chips

NIM, A 961 (2020) 163681, J. Phys.: Conf. Ser.,1690 (2020), 012041, NIM, A 958 (2020) 162037
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Particle identification with GaAs detector with the length of 50 cm.
Not optimized !

LR L L L L L

* Requirement at least one TR clusters to be present reduces pion
misidentification down to 2*10-2 at 98% electron efficiency.
. * Requirement of more than two TR clusters to be present reduces
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The End
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