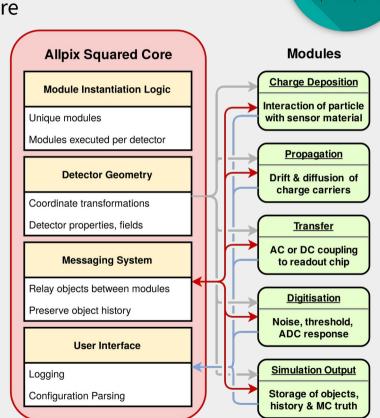


cern.ch/allpix-squared

Allpix Squared 2.0 & Onwards

Recent & Ongoing Developments for Semiconductor MC Simulations

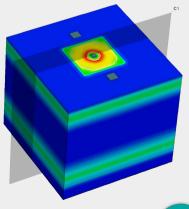

Simon Spannagel, DESY

10th Beam Telescopes & Test Beams Workshop 21 June 2022 Lecce, for real this time

Introduction: The Allpix² Framework

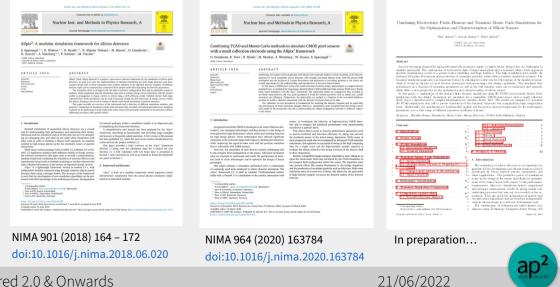
- Modular Semiconductor Pixel Detector MC simulation software
 - Microscopic: simulation of charge carrier motion
 - Extensible: single detectors / full systems
 - Configurable: no coding knowledge needed

- Main development guidelines:
 - Integration of Existing Toolkits
 - Well-Tested & Validated Algorithms
 - Low Entry Barrier for New Users
 - Clean & Maintainable Code



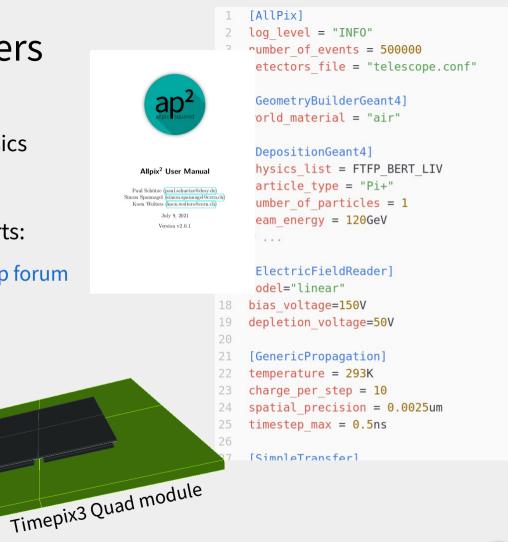
Integration of Existing Toolkits

- Many very powerful tools developed and employed over decades of detector R&D
- Leverage their capabilities by providing interfaces for their integration
- Geant4 simulating energy deposition of particles passing through matter
 - Extensive toolkit, detailed simulation of many interactions & processes (e.g. decays)
 - Cumbersome to use for beginners, complexity often overwhelming at first
 - Provide abstraction layer that auto-generates models and calls Geant4 kernel
- TCAD solving Poisson's equation using doping information
 - Detailed understanding of field configuration, sensor behavior
 - Tools & knowledge widely spread in community
 - Provide possibility to import results to complement MC simulations



Well-Tested & Validated Algorithms

- Simulations provide insights into physical processes but only if they model them correctly! Validation of algorithms crucial and time-consuming process
- With Allpix Squared, we strive for
 - Validating as much as possible against known data
 - Publishing reference studies including full simulation configuration used
 - Providing automated test for every new feature



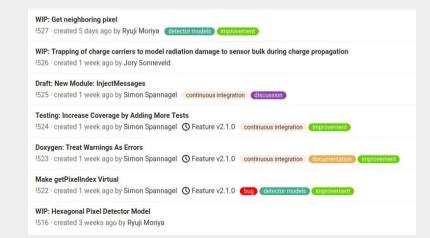
Low Entry Barrier for New Users

• Simulation frameworks often very complex: code complexity, lack of documentation, physics

- Allpix Squared attempts to facilitate quick starts:
 - Extensive documentation / user manual / help forum
 - Human-readable configuration files
 - Support for physical units
 - No coding or code-reading required
- Successfully used e.g. in university education, summer schools, ...

Otherwise quickly becomes unmaintainable

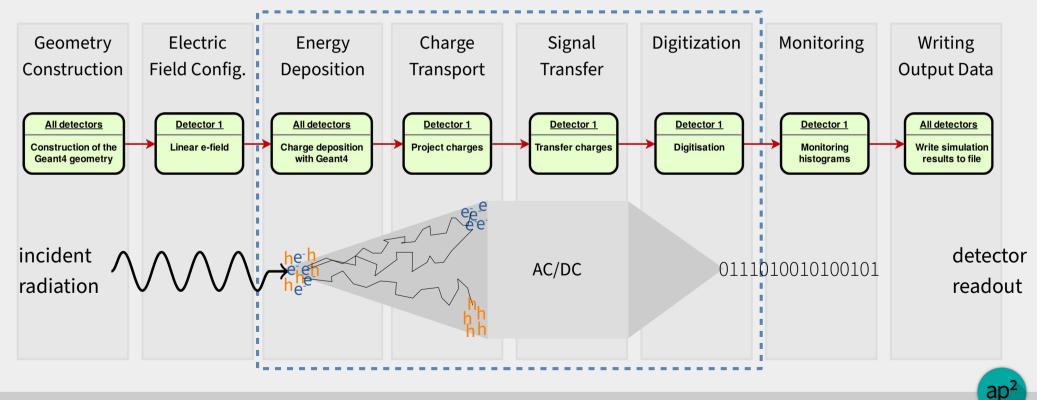
• Allpix Squared implements best practices for software development


Collaborative software development requires well-defined procedures –

- Permissive open-source license: MIT
- Extensive code reviews via merge requests
- Strict enforcement of coding conventions & formatting
- Regular static code analysis

Clean & Maintainable Code

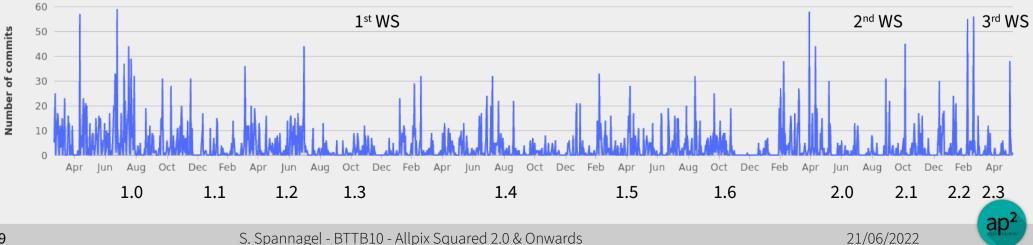
21/06/2022



•

Introduction: The Simulation Chain

- Building blocks follow individual steps of signal formation in detector
- Algorithms for each step can be chosen independently



A Brief History of Allpix Squared

- Started end of 2016 at CERN in EP-LCG group, now main development • at DESY
- Steady development 44 releases by now •
- Many applications in different fields, 49 contributors, 3 user workshops •

Commits to master

Excluding merge commits. Limited to 6,000 commits.

Recent Releases 2.0 – 2.3

and new Features

ap²

• More than 1500 commits over previous feature release 1.6

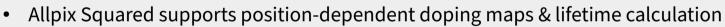
- Introduced fully parallel event processing (Started as
 Google Summer of Code project)
- Further separation between physics models & algorithms
- https://cern.ch/allpix-squared/post/2021-06-15-version-2.0.0/
- 2.1: Focus on smoothing out multithreading in some modules https://cern.ch/allpix-squared/post/2021-11-17-allpix-squared-2.1-released/
- 2.2: New features extending configurability & passive materials https://cern.ch/allpix-squared/post/2022-02-28-allpix-squared-2.2-released/
- 2.3: Introduction of multiple semiconductor sensor materials https://cern.ch/allpix-squared/post/2022-05-16-allpix-squared-2.3-released/

Allpix Squared Releases 2.0 – 2.3

2.0: First major release introducing structural changes to framework since 1.0 (08/2017)

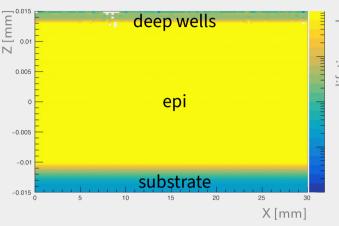
21/06/2022

٠


Event-Based Seeding & Multithreading

- Efficient use of system resources / multiple cores •
- Retaining strong reproducibility: exact same result, independent of # workers, •
- Fully transparent to user / simulation


Recombination of Charge Carriers


- In many applications: fast signal formation ٠ no need for recombination – all e/h pairs reach electrodes
- Sometimes, finite charge carrier lifetime becomes interesting: ٠
 - **High-dopant regions**
 - Low electric fields, signal formation via diffusion

- medium doping concentrations Shockley-Read-Hall recombination:
- Auger recombination: high doping concentrations
- Combination •

- $\tau^{-1}(N_d) = \begin{cases} \tau_{srh}^{-1}(N_d) + \tau_a^{-1}(N_d) & (minority) \\ \tau_{orb}^{-1}(N_d) & (majority) \end{cases}$
- Application example: monolithic active pixel sensors ٠

Different Carrier Mobility Models

- Providing different charge carrier mobility models
 - Field dependent

. . .

- Doping concentration dependent
- Optimized for high-field situations
- Custom models defined via configuration

- Description & reference provided in user manual
- Selected via configuration file

Replicating the Jacoboni-Canali mobility model at T = 293K
mobility_model = "custom"

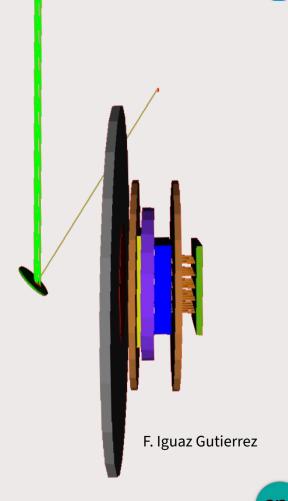
mobility_function_electrons = "[0]/[1]/pow(1.0+pow(x/[1],[2]),1.0/[2])
mobility_parameters_electrons = 1.0927393e7cm/s, 6729.24V/cm, 1.0916

mobility_function_holes = "[0]/[1]/pow(1.0+pow(x/[1],[2]),1.0/[2])"
mobility_parameters_holes = 8.447804e6cm/s, 17288.57V/cm, 1.2081

[GenericPropagation]
temperature = 293K
mobility_model = "masetti"

$$(E) = \frac{v_m}{E_c} \frac{1}{(1 + (E/E_c)^{\beta})^{1/\beta}},$$

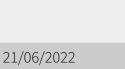
Jacoboni/Canali

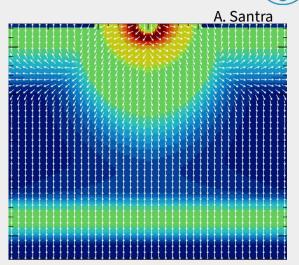

New Module: DepositionCosmics

- Simulation of cosmic rays with realistic particle • and energy composition
- Utilizes the CRY framework •
 - Database of cosmic ray composition and spectrum depending on altitude, latitude and date
 - Interfaces to Geant4
 - Inherits from DepositionGeant4 for sensor handling and energy deposition
- Applications: cosmic ray telescopes

Import of GDML Geometries

- GDML: Geometry Description Markup Language
 - Library of basic geometrical shapes
 - XML formatted geometry description: shape, dimensions, positioning and orientation
 - Features volume subtractions and mother/daughter volumes
- GDML imports are treated as passive volumes only
- Application examples: phantom definition for imaging, import of CAD models via GDML

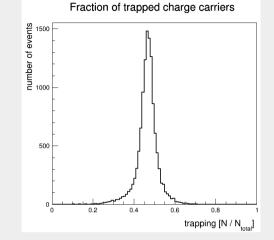


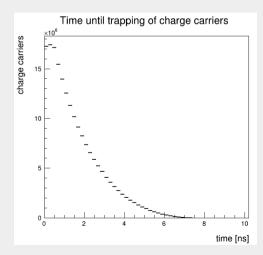


Custom Analytical Electric Field Functions

- From beginning on, implementations for
 - Linear electric fields → "standard" planar sensor
 - TCAD field maps → complex "known" sensors

- Often other models are required, now added:
 - Parabolic shape \rightarrow double-peaked electric field after irradiation
 - Possibility for custom analytical field functions
 → approximations of complex sensors
- Application example: approximating MAPS field




[ElectricFieldReader]
model = "custom"
field_function = "[0]*(x*x+y*y)"
field_parameters = 12500V/cm/cm

Charge Carrier Trapping

- Simulation of radiation-induced trapping of charge carriers
- Different trapping models implemented
 - Ljubljana / Kramberger
 - Dortmund / Krasel
 - Interpolation of CMS Tracker measurements
 - Mandic / high fluences
- Possibility to define custom trapping functions via configuration
- Scaling with fluence & temperature (where applicable)
- Note: this only describes trapping! Effects such as changed electric fields have to be provided separately, either through field map from TCAD or analytic approximation of E-field

Other Semiconductor Sensor Materials

- The Allpix Squared Silicon Semiconductor Detector Simulation
 Framework now allows for the definition of other sensor materials
 than silicon
- Definition of sensor materials impacts ...
 - Material in Geant4 geometry
 - Charge carrier creation energy default
 - Fano factor default
- Short list of supported materials
- → New materials can easily be added by users (see FAQs in manual)

Table 6.1: List	or default	sensor	material	properties	implemented	in Alipix-

Material	Charge Creation Energy [eV]	Fano factor	Sources
Silicon	3.64	0.115	25. 26
Gallium Arsenide	4.2	0.110	27
Cadmium Telluride	4.43	0.14	$\frac{27}{28}$, 29
Cadmium Zinc Telluride Cd _{0.8} Zn _{0.2} Te	4.6	0.14	30, 31
Diamond	13.1	0.14	30, 31 32, 32
Diamona			
Silicon Carbide (4H-SiC)	7.6	0.1	33, 34

Ongoing Projects and Developments

odule { end class ModuleManager; and class Messenger;

> f Base constructor for unique modules n config Configuration for this module

Module(Configuration& config);

Base constructor for detector modules config Configuration for this module detector Detector bound to this module g Detector modules should not forget to forward their detector to the

\ref InvalidModuleStateException will be raised if the module failed to s

ule(Configuration& config, std::shared_ptr<Detector> detector);

ential virtual destructor.

s all delegates linked to this module

();

a module is not allowed

.e&) = delete; const Module&) = delete;

ve behaviour (not possible with references)

ept = delete; le&&) noexcept = delete;

Impact Ionization

Implementation of charge multiplication through impact ionization underway

- Multiple models available, selection via configuration file: ٠
 - Massev
 - van Overstraeten-de Man
 - **Okuto-Crowell**
 - Bologna ٠
- Fully documented in user manual •

Implementation in Allpix² completed, undergoing testing, • Comparison with Weightfield2 & TCAD simulations

coefficient α and the length of the step l performed in the respective electric field. If the electric field strength stays below a configurable threshold $E_{\rm thr}$, unity gain is assumed:

$$g(E,T) = \begin{cases} e^{l\cdot\alpha(E,T)} & E > E_{\rm thr} \\ 1.0 & E < E_{\rm thr} \end{cases}$$
(6.12)

The the following impact ionization models are available:

6.3.1 Massey Model

The Massev model 35 describes impact ionization as a function of the electric field E. The ionization coefficients are parametrized as

$$\alpha(E,T) = Ae^{-\frac{B(T)}{E}}, \qquad (6.13)$$

where A and B(T) are phenomenological parameters, defined for electrons and holes respectively. While A is assumed to be temperature-independent, parameter B exhibits a temperature dependence and is defined as B(

$$(T) = C + D \cdot T. \tag{6.14}$$

The parameter values implemented in $Allpix^2$ are taken from Section 3 of 35 as:

 $A_{e} = 4.43 \times 10^{5} \,/\mathrm{cm}$ $A_{\rm h} = 1.13 \times 10^6 \,/{\rm cm}$ $C_e = 9.66 \times 10^5 \, \text{V/cm}$ $C_h = 1.71 \times 10^6 \, {\rm V/cm}$ $D_e = 4.99 \times 10^2 \, \text{V/cm/K}$ $D_h = 1.09 \times 10^3 \, {\rm V/cm/K}$

for electrons and holes, respectively.

This model can be selected in the configuration file via the parameter multiplication model = "massey".

6.3.2 Van Overstraeten-De Man Model

The Van Overstraeten-De Man model 36 describes impact ionization using Chynoweth's law, given by

$$\alpha(E,T) = \gamma(T) \cdot a_{\infty} \cdot e^{-\frac{\gamma(T) \cdot b}{E}}, \qquad (6.15)$$

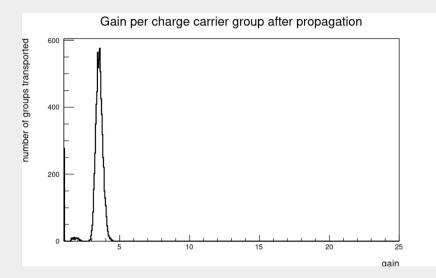
For holes, two sets of impact ionization parameters $p = \{a_{\infty}, b\}$ are used depending on the electric field:

p :

$$= \begin{cases} p_{\text{low}} & E < E_0\\ p_{\text{high}} & E > E_0 \end{cases}$$
(6.16)

Temperature scaling of the ionization coefficient is performed via the $\gamma(T)$ parameter following the Synposys Sentaurus TCAD user manual as:

$$\gamma(T) = \tanh\left(\frac{0.063 \times 10^6 \text{ eV}}{28.6173 \times 10^{-5} \text{ eV}/\text{K} \cdot T_0}\right) \cdot \tanh\left(\frac{0.063 \times 10^6 \text{ eV}}{28.6173 \times 10^{-5} \text{ eV}/\text{K} \cdot T}\right)^{-1}$$
(6.17)

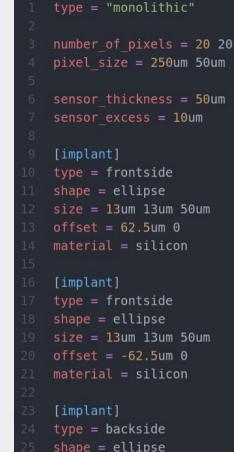


Impact Ionization – Example

- Enable/select via configuration file:
 - Multiplication model
 - Electric field strength threshold field for multiplication


[GenericPropagation]
temperature = 293K
multiplication_model = "massey"
multiplication_threshold = 100kV/cm

• Automatic check of propagation parameters (time stepping, ...)

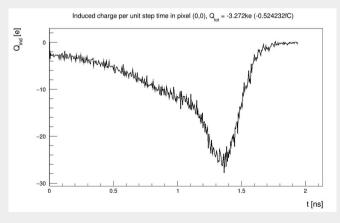

(WARNING) [I:GenericPropagation:lgad] Charge multiplication enabled with maximum timestep larger than 1ps This might lead to unphysical gain values.

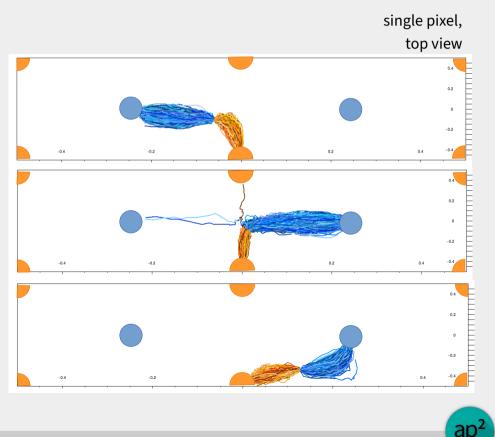
• Status MR !472

Simulation of 3D Sensors

- Definition of per-pixel implants via detector model file
 - Position with respect to pixel center
 - Shape & orientation
 - Material
 - front/backside
- Implants are repeated for each pixel
- Add as many implants as required, syntax similar to support layers (PCB etc)
- Requires matching electric field map
- Proper collision detection algorithms of charge carriers with implant volumes; motion stops immediately at implant border

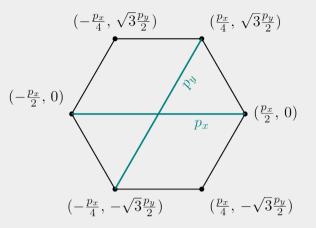
- 5 shape = ellipse 6 size = 13um 13um 49um
- 7 offset = -125um -25um

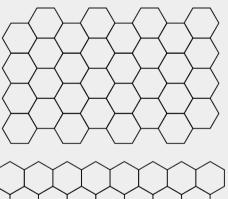

21/06/2022

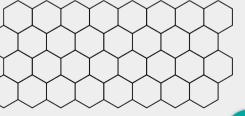

28 material = aluminum

Simulation of 3D Sensors – Example

- First simulations with ATLAS 3D sensor geometry
 - Two central front-side columns (collect charge)
 - Six Ohmic backside contact columns
- Charge collection / sharing works as expected
- Transient simulations produce pulses
- Status: MR !672

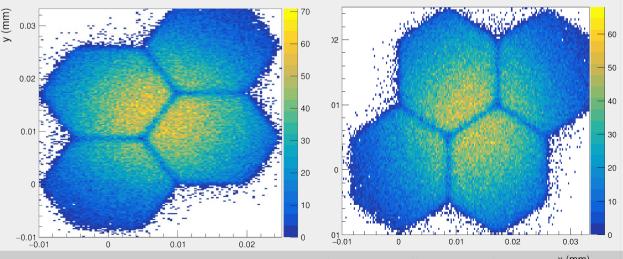


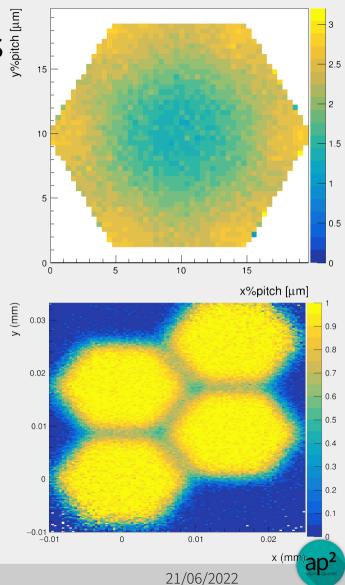

Hexagonal Pixel Geometries


Extension of Allpix² geometry subsystem to enable simulation of different pixel shapes & matrix arrangements

- Hexagonal geometry interesting for many applications
 - Avoid problematic field regions in corners (small electrodes: low fields, large electrodes: high fields)
 - Symmetry more close to circle more uniform response
- Implementation in Allpix² completed, undergoing testing:
 - Using axial coordinate system
 - Support for "pointy" & "flat" hexagon orientation, regular (same-pitch) and distorted (different pitch) hexagons
- Used already by several groups

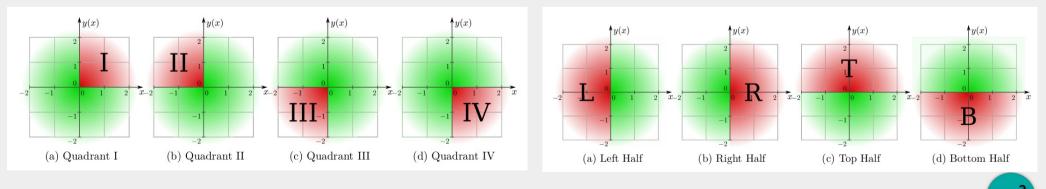
Other geometries already merged (e.g. radial strips @ ATLAS Itk)

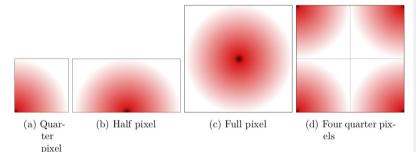



ap

Some Nice Plots – with Hexagonal Pixels

- Performed implementation tests with hexagonal pixel detector large pixels, linear electric field, high charge threshold
- Analysis of basic properties
 - Recovery of radial beam profile from pixel matrix
 - In-pixel cluster size distribution
 - Efficiency fall-off at hexagon edges




Rework Loading Electric Field Maps

ap

- Current loading of field maps is very flexible... ...but only works for rectangular geometries!
- Started implementation of new mapping of fields to pixels per-pixel lookup of fields
- Has some advantages (lookup possible for any pixel shape) and some disadvantages (not possible to provide multi-pixel fields)
- Final solution likely will keep current mapping (as default) with new possibility (full, half, quarter pixels)

In a nutshell...

21/06/2022

S. Spannagel - BTTB10 - Allpix Squared 2.0 & Onwards

Summary & Outlook

Allpix Squared

- Flexible semiconductor Monte Carlo simulation framework ideas
- Steady development over many years, large & growing user base in many fields

Recent Releases

- Released one major (2.0) & three subsequent feature (2.1, 2.2, 2.3) versions since last BTTB
- Many new features, continuously extending reach of simulations: Multithreading, GDML objects, Recombination, different Mobility Models, Cosmics, Trapping, other Semiconductors, ...

Upcoming Major Release

- We are working already towards the next major release 3.0
- Main ingredients: reworked geometry framework to allow for e.g. hexagons, polar coordinates etc
- Revamped website & documentation coming!

Allpix Squared Resources

Website

https://cern.ch/allpix-squared

Repository

https://gitlab.cern.ch/allpix-squared/allpix-squared

Docker Images

https://gitlab.cern.ch/allpix-squared/allpix-squared/container_registry

User Forum:

https://cern.ch/allpix-squared-forum/

Mailing Lists:

allpix-squared-users https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10262858

allpix-squared-developers https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10273730

User Manual:

https://cern.ch/allpix-squared/usermanual/allpix-manual.pdf

