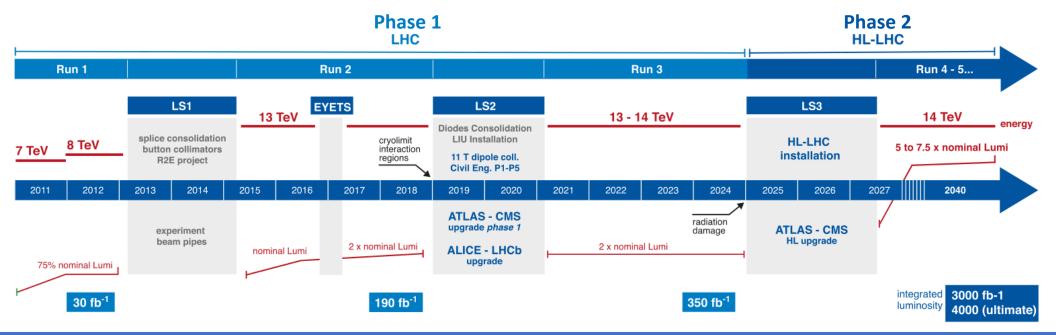


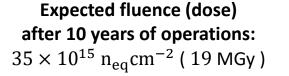
10th Beam Telescopes and Test Beam Workshop

Test Beam Results of Highly Irradiated 3D and Planar Pixel Sensors Interconnected to the RD53A Readout Chip

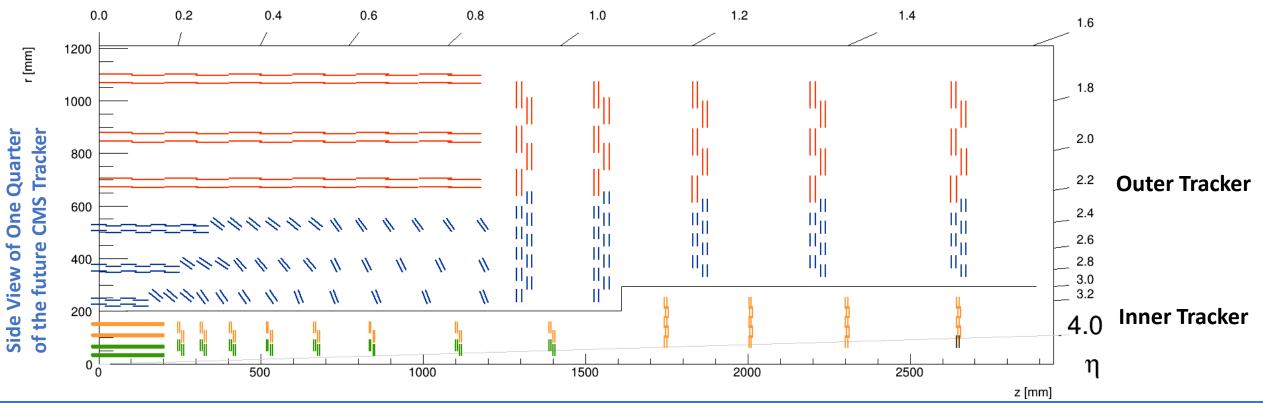
Rudy Ceccarelli


On behalf of the CMS Tracker Group

22/06/2022

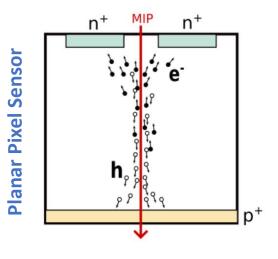

High Luminosity LHC

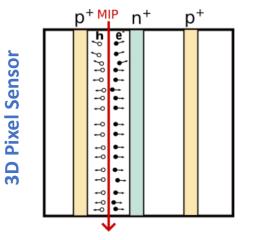
- HL-LHC will be installed between 2025 and 2027 → CMS will restart data taking in 2027 (start of Phase 2)
- Luminosity ${\cal L}~$ will reach 7.5 $\times~10^{34}~cm^{-2}s^{-1}$
- Collect up to $\mathcal{L}_{int} = 4000 \text{ fb}^{-1}$ in 10 years (to be compared with the expected 500 fb⁻¹ at the end of Phase 1)
 - Study rare events of the Standard Model or search for new physics
- All the CMS detectors will be upgraded \rightarrow Hit rate up to 3.2 GHz cm⁻²
 - The silicon tracker will be completely replaced



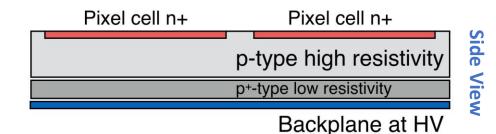
The CMS Tracker Upgrade

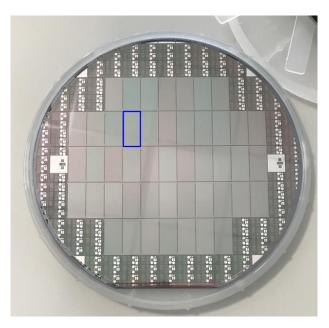
- Composed by two sections:
 - Inner Tracker \rightarrow Pixel detectors (this presentation)
 - 4.9 m^2 of pixel surface and 2×10^9 channels
 - Inner layer at only 30 mm from the beam line -
 - **Outer Tracker** → Strip and macro-pixel detectors




3D Layout of One Quarter of the Inner Tracker

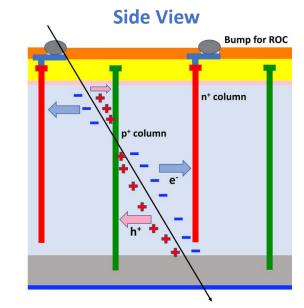
Silicon Pixel Sensors


- Two types of sensors are considered for the new tracker:
 - Standard "planar" pixel sensors
 - **3D** pixel sensors → Higher radiation resistance
 - New technology: considered only for the innermost layer
- In 3D sensors the drift path is perpendicular to the active thickness
 - Short drift distance of charge carriers: $\sim 30 50 \ \mu m$ (vs. $100 150 \ \mu m$ for planar)
- 3D sensors have many advantages with respect to planar sensors:
 - Smaller bias voltages needed to deplete the sensor
 - Reduced trapping probability in irradiated sensors
- Active thickness (for both 3D and planar pixel sensors): $150 \ \mu m$
- Pixel size (pitch): $50 \times 50 \ \mu m^2$ or $25 \times 100 \ \mu m^2$ (six times smaller w.r.t. the present CMS tracker)
 - + $25 \times 100 \ \mu m^2$ is now the baseline for the whole Inner Tracker

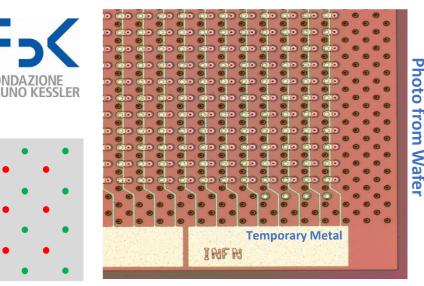


Planar Pixel Sensors

- The planar pixel sensors studied in this presentation are made by:
 - An active area, the substrate (*p*-doped, high resistivity silicon)
 - Superficial n^+ implants used as collecting electrodes
- A low resistivity silicon layer is bonded to the high resistivity substrate (Silicon-Silicon)
 - Mechanical support for the silicon wafer during production
 - Ohmic contact for the p n junction
 - Thinned and metallized after production \rightarrow Total sensor thickness around 250 μm
 - "Direct Wafer Bonding" (DWB) technique
- The bias voltage is applied to the ohmic contact, on the backside of the sensor

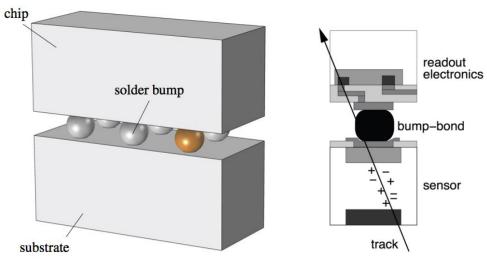


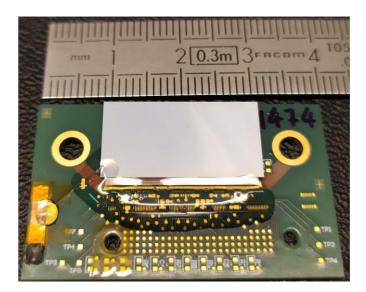
Silicon Wafer



3D Pixel Sensors

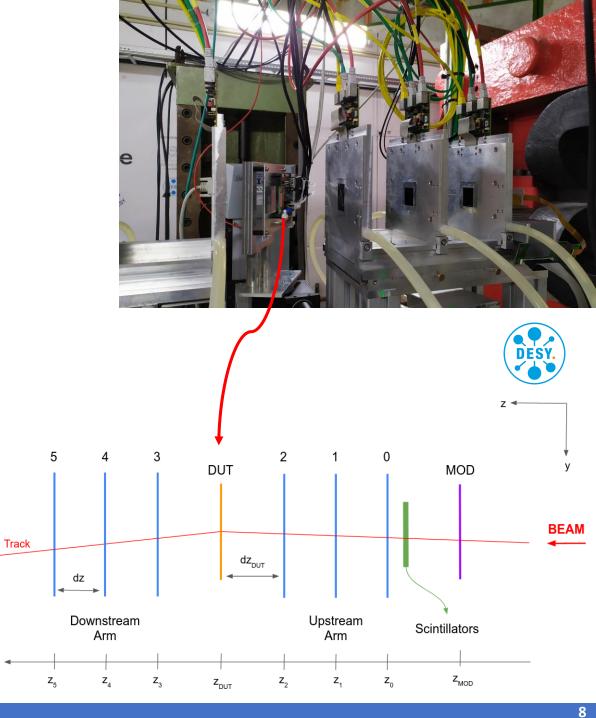
- 3D pixel sensors studied in this presentation are fabricated with the DRIE technique
- Columnar implants penetrate deep into the substrate from the same silicon face
 - 5 µm diameter holes in silicon
 - The columns are doped differently: p^+ and n^+
 - p^+ columns reach the backside of the sensor, hence the bias voltage
 - *n*⁺ columns are connected to the readout chip
- A pixel "cell" is delimited by p^+ columns
 - n^+ column in the center of the cell
- Pixel sensors studied in this presentation (planar and 3D) were developed in a collaboration between
 INFN and FBK foundry (Trento)


Top Views

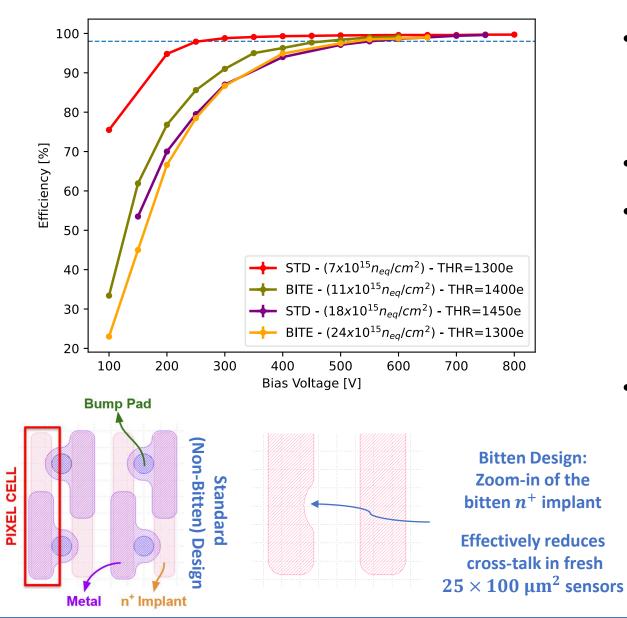

Pixel Cel

The Readout Chip

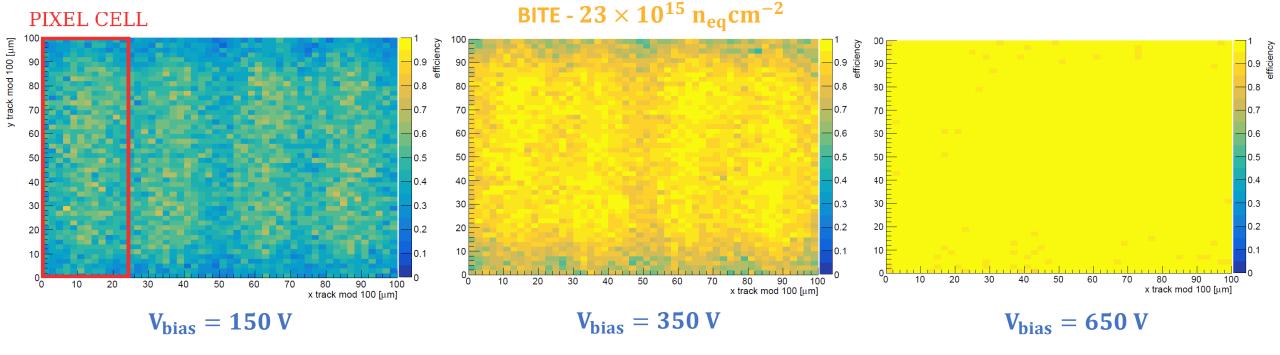
- The ReadOut Chip (ROC) is coupled to the sensor
 - Bump bonding technique
 - Sensor + ROC \rightarrow Pixel module
- RD53 chip project (collaboration between ATLAS and CMS)
 - 65 nm technology and 50 \times 50 μm^2 (single) cell size
 - Radiation hard (certification up to 5 MGy)
- RD53A ($\sim 1/2$ size of the final chip) is the first prototype
 - 76800 pixel channels (only the central zone was readout for this presentation)
 - Used for R&D in the last years
- Various calibrations are needed to operate the pixel modules
 - For instance, the pixels channels can be tuned to average thresholds below 1000 electrons (with a dispersion of ~ 50 electrons) before irradiation


Bump Bonding

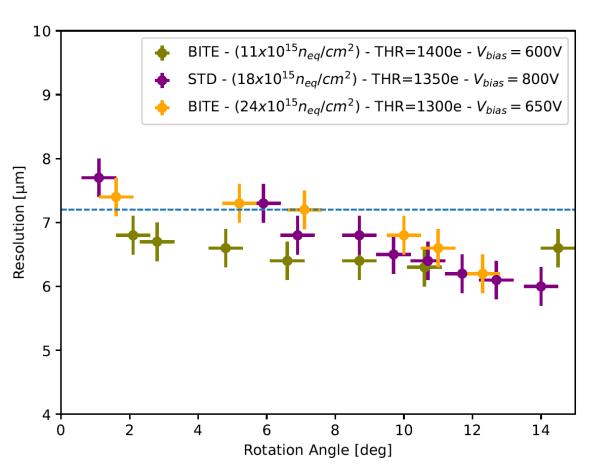
Sensor + RD53A ROC assembly


The DESY Test Beam Facility

- Several Test Beam experiments at DESY...
 - ...to fully characterize 3D and planar pixel modules
 - Test beam facility (5.2 GeV electron beam)
- Telescope: EUDET type (MIMOSA26 pixel sensors)
 - Six planes of tracking detectors
- DUT: Device Under Test, our tested pixel module
- Pixel modules are tested before and after being irradiated
 - To fluences equivalent to those expected in HL-LHC
- Irradiated DUTs are kept inside a cooling box
 - Stable temperature of about $-27 \, ^{\circ}\text{C}$
 - Compensate the effects of radiation damage

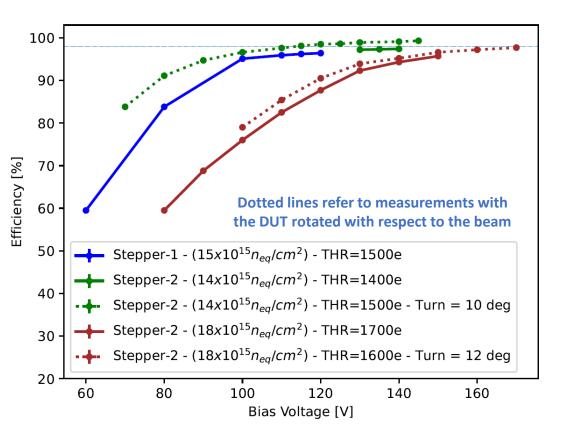

Rudy Ceccarelli

Irradiated Planar Pixel Modules – Hit Detection Efficiency


- Four $25 \times 100 \ \mu m^2$ irradiated planar pixel modules (Standard and Bitten designs) were tested on beam
- Hit detection efficiency vs. the bias voltage
- In order to reach an efficiency > 98% :
 - $V_{bias} > 400 \text{ V}$ after a fluence of $11 \times 10^{15} n_{eq} \text{cm}^{-2}$
 - $V_{bias} > 600 \text{ V}$ after a fluence of $23 \times 10^{15} \text{ n}_{eq} \text{ cm}^{-2}$
- Planar pixel modules in the innermost tracker layers can survive for more than half the HL-LHC program
 - However, very high bias voltages are required
 - Cooling becomes challenging

Irradiated Planar Pixel Modules – Hit Detection Efficiency

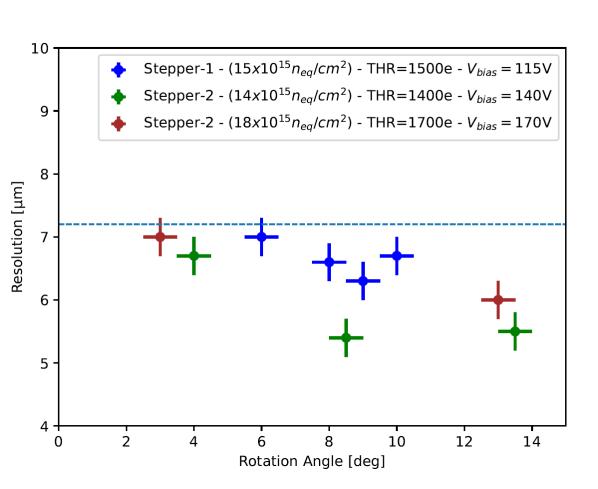
- Hit detection efficiency map for a 4×1 pixel grid, with increasing V_{bias} and perpendicular track incidence
- At low V_{bias} the efficiency is lower at the intersection of adjacent pixels
 - Due to charge sharing between pixels and charge trapping in highly irradiated silicon
- By increasing V_{bias} the efficiency increases and becomes more uniform across the pixel cells
 - More depleted sensor and higher electric field → Higher collected charge and higher detection efficiency


Irradiated Planar Pixel Modules – Resolution

The horizonal line marks the digital resolution

- Resolution vs. rotation angle (w.r.t. the beam)
 - Rotation around the 25 μm pitch
- Due to the presence of the cooling box, only the upstream telescope planes are used in reconstruction
 - Telescope resolution estimated with simulation...
 - ...and subtracted in quadrature
- In fresh modules, resolution is 2 μ m at the optimal angle
- In irradiated modules the resolution is deteriorated
 - Due to charge trapping \rightarrow Lower cluster size
 - However, resolutions close to $6 \ \mu m$ can be achieved
 - Despite the extreme irradiation fluences

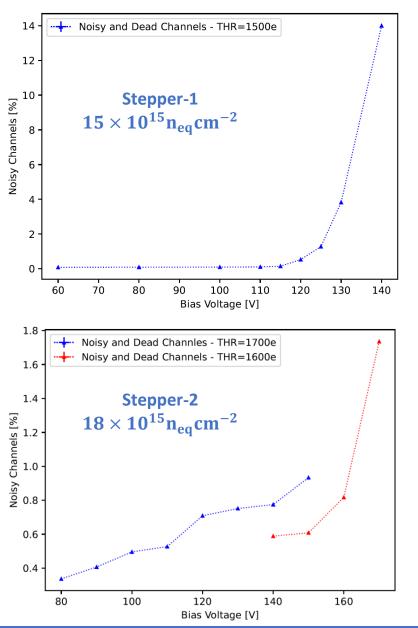
Irradiated 3D Pixel Modules – Hit Detection Efficiency



Two FBK 3D productions: Stepper-1 and Stepper-2

(Step-And-Repeat photolithography technology). The pixel design is the same, but in Stepper-2 the distance between n^+ columns and the backside of the sensor was increased.

- Three $25 \times 100 \ \mu m^2$ irradiated 3D pixel modules (Stepper-1 and Stepper-2 productions) were tested on beam
- Hit detection efficiency vs. the bias voltage
- In order to reach an efficiency > 98% :
 - $V_{bias} > 110$ V after a fluence of $15 \times 10^{15} n_{eq} cm^{-2}$
 - $V_{bias} > 160 \text{ V}$ after a fluence of $18 \times 10^{15} \text{ n}_{eq} \text{ cm}^{-2}$
- Higher efficiency when the DUT is rotated w.r.t. the beam
 - The columns are made by passive material \rightarrow Inefficiencies
 - By rotating the DUT the inefficiencies are recovered, since incident particles always escape the passive material


Irradiated 3D Pixel Modules – Resolution

- Resolution vs. rotation angle (w.r.t. the beam)
 - Rotation around the 25 μm pitch
- Telescope resolution is estimated from simulation
- In fresh modules, resolution is $2\ \mu m$ at the optimal angle
- In irradiated modules the resolution is deteriorated
 - However, resolutions close to 6 µm can be achieved
 - Despite the extreme irradiation fluences
- Compatible results w.r.t. planar pixel modules

The horizonal line marks the digital resolution

Irradiated 3D Pixel Modules – Noisy Channels

- A sudden increase in the number of noisy channels was observed...
 - ...at high bias voltages (greater than 130-170 V, depending on the module)
 - The problem was more severe with **Stepper-1** modules (> 10% of channels)
- The cause is still under investigation: might be related to the very high TID
 - The modules were irradiated at KIT with 23 MeV protons
 - The corresponding dose is extremely high: over 30 MGy
 - The RD53A readout chip was design to withstand a maximum of 5 MGy
- New irradiations are currently ongoing at CERN IRRAD facility
 - + Up to $20\times 10^{15}~n_{eq} cm^{-2}$

Conclusions

- The CMS Inner Tracker project of the HL-LHC is extremely challenging
- Planar pixel modules showed excellent performance after being irradiated to 23×10^{15} n_{eq} cm⁻²
 - Although with very high bias voltages, $V_{bias} > 600 V$
- 3D pixel modules irradiated to similar fluences showed similar performances
 - With lower bias voltages $V_{bias} < 200 V$
 - The noisy channels behavior is still under study (new modules irradiations with lower TID are ongoing at CERN)
- The presented results will contribute to the optimization of the pixel detectors to be installed in CMS
 - 3D pixel modules will be installed in the innermost layer of the future CMS tracker