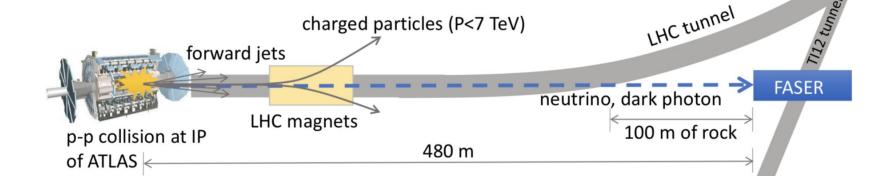


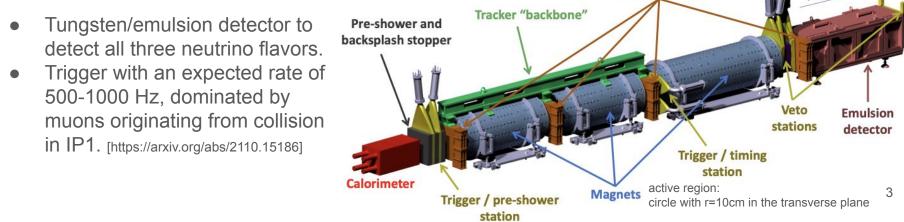
Performance of the FASER tracker using testbeam data

June 23rd 2022 10th Beam Telescopes and Test Beams Workshop


Markus Prim (University of Bonn) on behalf of the FASER collaboration

The FASER Experiment

- FASER is a small experiment at the LHC and ...
 - \circ ... located 480m from IP1, in the line-of-sight and low p_T spot of ATLAS.
 - ... most backgrounds are greatly reduced by accelerator magnets and ~100m rock shielding.
 - ... will take data during LHC Run-3 (2022-2024).
- FASER targets light, weakly-coupled new particles at low pT
- FASERv targets the measurement of neutrinos produced in pp collisions.



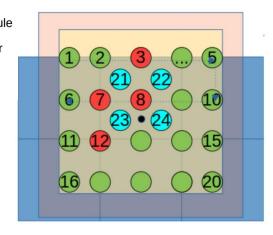
2

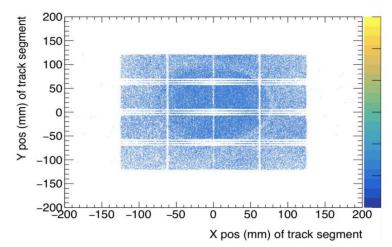
The FASER Experiment

- Three 0.55 T permanent dipole magnets to separate charged particles from LLP decays.
- Veto, timing, and pre-shower scintillator stations to ensure LLPs decay inside of the decay volume or emulsion detector and triggering.
- Three tracking stations and an interface tracker to measure position and momenta of charged particles. [https://arxiv.org/abs/2112.01116]
- Electromagnetic calorimeter to measure particle energy and discriminate electrons from muons and triggering
 Tracker stations
 Tracker stations

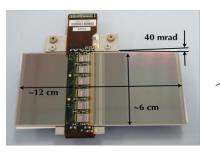
The 2021 FASER Test Beam

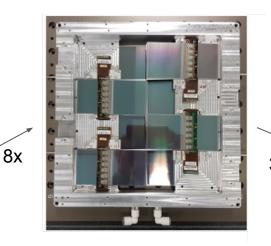
- CERN H2 beam line 28th July 4th August 2021
- Purpose: energy calibration of preshower and calorimeter and check the performance of the detector
- Set up: two trigger scintillators, 3-layer tracker station, preshower and 6 calorimeter modules
- Tracker station used as telescope for the calorimeter measurements, but we also use the data to characterize the tracker



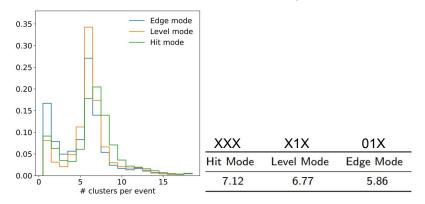


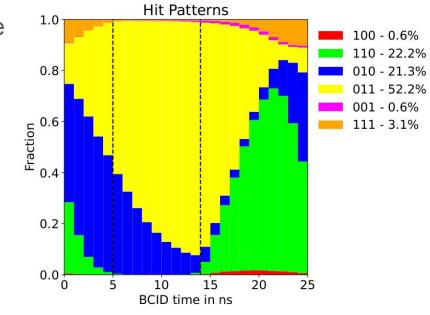
The 2021 FASER Test Beam


- Over 150 million events (1.8 TB) recorded
 - 24 individual spatial points of the detector
 - Different beam settings:
 - Electron: 5-300 GeV
 (primarily 30, 75 and 200 (
 - (primarily 30, 75 and 200 GeV)
 - Muon: 200 GeV, large beam size >5cm
 - Pion: 200 GeV
 - \circ Various settings for the detector
 - Low, medium, and high PMT calo gain O(10³) to O(10^{^6})
 - Removal of optical filters in the calo
 - Removal of preshower material
- Today: Focus on Tracker and Preshower
- Studies are ongoing and everything shown today is preliminary and a work in progress...



Tracker

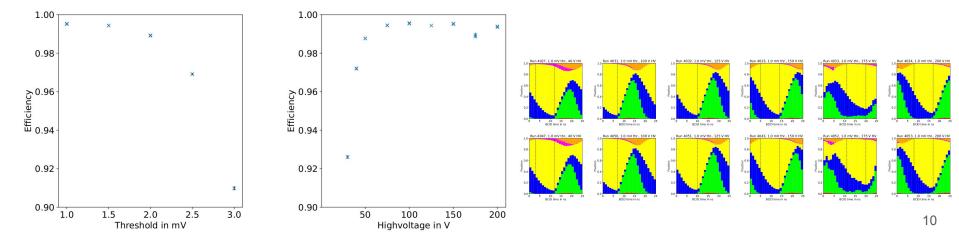

- spare ATLAS SCT modules
- 768 strips/layer, 80µm pitch
- 2 sensors layers w/ 40mrad stereo angle
 - \circ ~17µm / 560µm resolution
 - 12 chips/module
- 2x4 modules per detector plane, 24x24cm² surface
- 3 planes per station


Tracker Readout

- Tracker reads out 3 bins of 25ns
- The test beam particles are asynchronous to the 40 MHz clock we used for the tracker
- We measure the arrival time with respect to the clock (BCID time) with the preshower scintillators

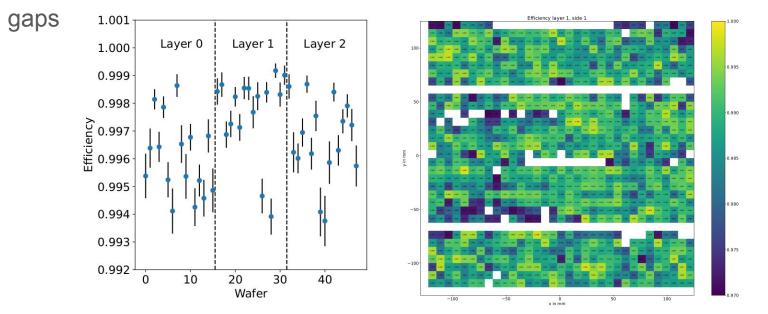
Tracker - Hit Modes and Patterns

- For BCID time between 5ns and 14ns, we almost exclusively see hit patterns 010 (20.6%) and 011 (78.6%)
- Hit pattern depends on the timing, but we see we can find a good timing window
- For real LHC beam particles the intrinsic time spread is only O(200ps) → optimal window can be found "easily"

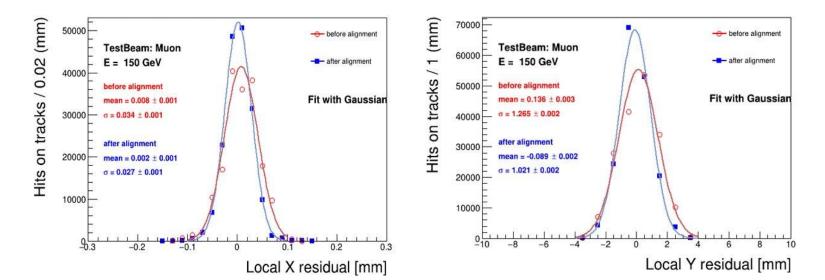


Tracker - Hit Efficiency

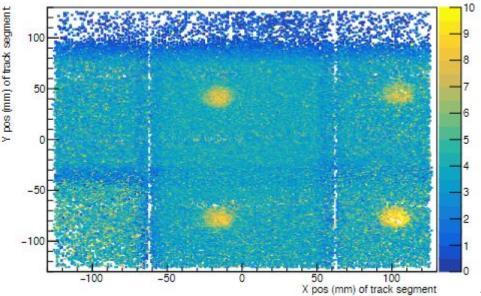
- Hit efficiency: Probability to find an additional strip with a distance smaller than 1.5 mm to the expected position when we create a track segment with the other five modules:
- Measured efficiency $\epsilon = (99.796 + -0.006)\%$
- MC efficiency ϵ = 99.94 %
- ATLAS measured efficiency $\epsilon = (99.36 + 0.42)\%$


Tracker - Voltage Dependence

- Lower thresholds lead to >50 hits
- BCID time / hit patterns and high voltage are correlated!
- No correlation with threshold
- Smaller efficiency for 175 V since hits with 110 hit pattern are missing
- Optimal time window moves (not the BCID time)


Tracker - Module Efficiency

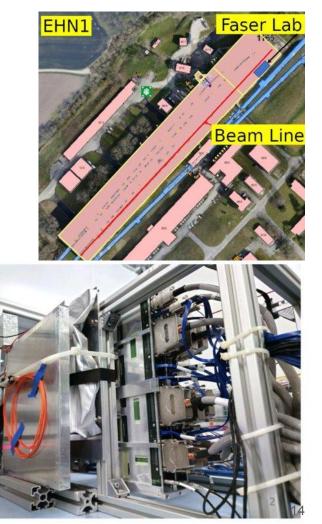
- No masked strips → expect similar efficiency for all wafers
- Uniform hit efficiencies for all layers/sides
- Layer gaps at y=+-60mm, +-5mm layer offsets w.r.t. center layer to avoid


Tracker - Alignment

- Local Alignment of the middle layer demonstrates 20-30µm resolution
- Global Alignment approach in development
 - preliminary results indicate that the individual misalignment across all modules is consistent with expectation of ~100 µm shifts and ~2mrad rotations

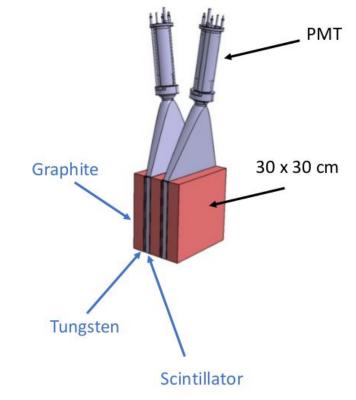
Tracker + Calorimeter: Response

- Calorimeter response with respect to the track position
- Response increases greatly when muons traverse the PMT
- Note:
 - The tracker area does not fully cover calorimeter area.
 - The gaps originate from the tracker

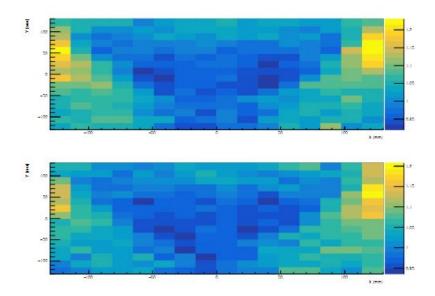


Tracker + Emulsion

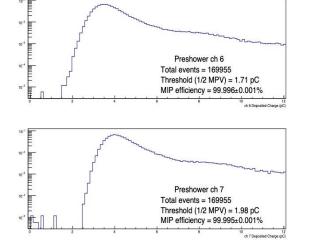
Combined test run on the surface with scintillator, emulsion module and the IFT

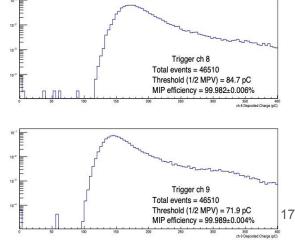

- make use of low rate of scattered muons from test beam line from SPS which can be detected from our lab (about 6m away)
- 1.5 million tracks expected over time
- the track density in reconstructed emulsion is consistent with the expected counts

Emulsion-IFT track matching study is ongoing

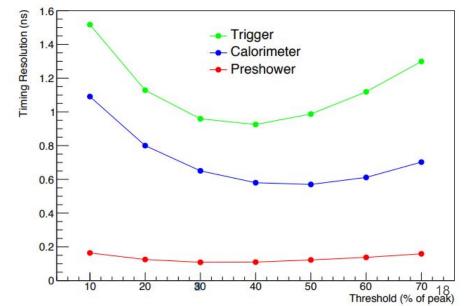

Preshower

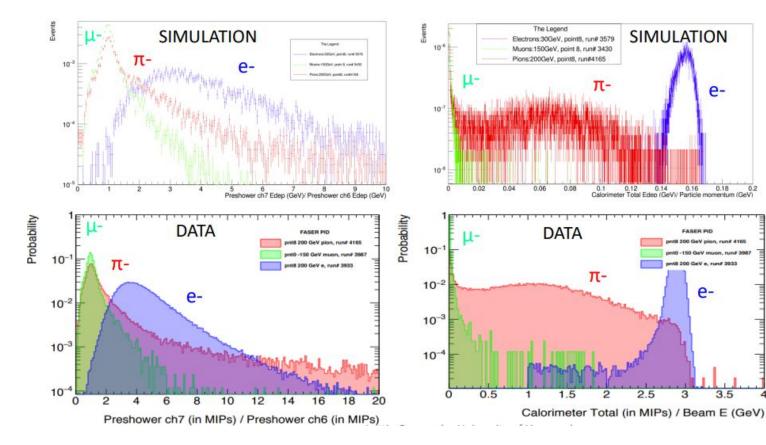
- 2 scintillator stations w/ single PMT for readout
- ~3mm tungsten radiators, roughly ~2 radiation lengths
- ~5cm graphite to reduce backsplash from the calorimeter
- PMT module provides readout pulses


Preshower Response


- Measure light collection efficiency using track position and preshower response from muons.
- Expected: Straight MIP tracks should generate uniform amount of light independent of position.
- Light collection non-uniformity varies by +- 15% across the area of the preshower.
- Triangular shape can be explained by the triangular light guide.

Scintillator Efficiency


- Use clean muon events to measure MIP efficiency of each preshower and trigger scintillating layer
- A special run was taken where we triggered with the preshower layers, to have an unbiased sample for the trigger layers
- MIP efficiency >99.98% for all scintillating layers, defining a threshold at half the MIP signal
- MIP efficiency within the specification for the experiment



Scintillator Timing Resolution

- Timing resolution measured with the 200 GeV electron data
- Crystal ball fit of the waveforms, and backing out the time of the waveform at constant fraction threshold of the peak height
- Subtract these measured times of other detectors of the same type
- Distribution of time difference fitted with a Gaussian (time resolution)
- Optimal constant fraction threshold for timing resolution of each detector type:
 - 577±1 ps for the calorimeter
 - 110±1 ps for the preshower
 - 929±2 ps for the trigger
- Measured time resolution is within the specification of the experiment (better than 1ns)

PID capabilities

Summary & Outlook

- We had a successful test beam campaign with a small scale detector system.
- Plenty of recorded data, and analysis is still ongoing for some aspects.
- The individual components behave within the specifications for the experiment
- Performance agrees with measurements from other experiments and simulations
- Paper on the testbeam results is in preparation

- The full FASER detector has been installed in the LHC tunnel
- In-situ commissioning still ongoing, we are recording first events from LHC commissioning
- Ready for the coming data taking period