

Testbeam performance of RD53a hybrid pixel detectors for the ATLAS ITk

Adam Rennie on behalf of the ATLAS ITk pixel testbeam community 23rd June, 2022

BTTB10, Lecce

Testbeam performance of RD53a hybrid pixel detectors for the ATLAS ITk

Craig Buttar, Dima Maneuski, **Adam Rennie**, Kenneth Wraight
UNIVERSITY OF GLASGOW

Yanyan Gao, Emily Pender UNIVERSITY OF EDINBURGH

Ricardo González López, Matthew Sullivan, Jon Taylor
UNIVERSITY OF LIVERPOOL

The ATLAS Inner Detector (ID)

- Pixel Detector (pixels), Semiconductor Tracker (SCT, strips), Transition Radiation Tracker (TRT, drift tubes)
- Tracking out to $|\eta| < 2.5$
- Inner B-Layer (IBL) innermost layer installed during LS1

The ATLAS Inner Tracker (ITk)

- Run 2 pileup was $\langle \mu \rangle \sim$ 30. Pileup during high-luminosity LHC (HL-LHC) expected to be $\langle \mu \rangle \sim$ 200.
- Instantaneous Run 2 luminosity peaked at $2 \times 10^{34}~\rm cm^{-2}~s^{-1}$, same expected for Run 3. At HL-LHC, instantaneous luminosity expected to peak at $7.5 \times 10^{34}~\rm cm^{-2}~s^{-1}$, accumulating 4000 fb⁻¹ of data.
- New tracker required for HL-LHC the ITk!

- ITk is an all-silicon tracking system replacing the ID with a system of silicon pixel and strip layers
- Extends coverage out to $|\eta| < 4.0$
- Five layers of pixels, formed of barrel, outer barrel, and endcap regions

- Must have:
 - Sufficient radiation hardness (inner section to be replaced halfway through lifetime)
 - Increased granularity
 - Reduced material budget
- Achieved with combination of planar and 3D sensors, ITkPix readout chip based on RD53 prototype

PIXELS	Pitch	Thickness	Channels	Modules	Area
ID*	$50 \times 400 \; \mu m^2$	250 μm	9×10^7	2024	1.9 m ²
ITk**	$50 \times 50 \; \mu m^2$	150 µm	5×10^9	9164	12.8 m ²

^{*}IBL thickness 230 $\mu m,$ 200 μm for 3D, planar sensors respectively. IBL pitch $50 \times 250~\mu m^2$

^{*}L1 planar sensors 100 μm thickness, 25 \times 100 μm^2 pitch for barrel 3D modules

Devices under test (DUTs)

- Devices presented here are RD53A bump-bonded to 150 μ m thick *n*-in-*p* planar sensor, pixel pitch 50×50 μ m²
- Different punchthrough bias (PTB) structures on different devices not required for operation but very useful for QC in production
- Modules irradiated with a fluence of $3.4 \times 10^{15} n_{\rm eq}/{\rm cm}^2$
- Evaluated with reference to ATLAS planar sensor market survey efficiency criteria:
 - 97% for 150 μm sensor irradiated to 2 imes 10¹⁵ $n_{\rm eq}/{\rm cm}^2$ at 400 $V_{\rm bias}$
 - 97% for 150 μm sensor irradiated to 5 imes 10 $^{15} n_{\rm eq}/{\rm cm}^2$ at 600 $V_{\rm bias}$

Testbeam setup

- Data taken over two testbeam campaigns
- 120 GeV pions at the SPS in October 2018, 4 GeV electrons at DESY in December 2018

- Data taken using BDAQ
- EUDET-type telescopes on both occasions: six MIMOSA26 telescope planes with high spatial resolution along with an FEI4 plane to provide timing information
- Trigger logic unit (TLU) used in tandem with a scintillator either end of the telescope to feed trigger to DUTs and telescope planes
- EUDAQ combines data streams from each planes into single output to be used for reconstruction & analysis

Reconstruction and analysis

- Reconstruction performed using EUTelescope, standard staged approach:
 - 1. CONVERTER: put data into common format. Flag *noisy pixels* which fire above some *firing frequency*.
 - CLUSTERING: group pixels into clusters, remove clusters containing noisy pixels.
 - HITMAKER: transform from local to global coordinate system, construct correlations between planes. Pre-alignment.
 - 4. ALIGNMENT: With track candidates, minimise residuals between telescope planes to adjust plane positions.
 - 5. FIT: Use updated geometry to then fit the tracks to the DUTs, output for analysis.

- Analysis with TBmon2, primarily to investigate:
 - Global efficiency to compare against efficiency criteria as a function of V_{bias} and threshold
 - In-pixel efficiency maps overlaying 4 × 4 groups of pixels across the full sensor to accumulate statistics and see how the efficiency is affected by PTB structure

- New approach developed during work on MS
- Common git repository established to control processing with common config files, geometries, etc.
- Derive reconstruction and analysis parameters with single run & small event numbers locally
- Use HTCondor batch processing to handle reconstruction and analysis

- Campaign split into runs, each reconstructed in parallel then analysis performed in parallel as well
- Parse output for entire campaign into single JSON file
- Plot results and comparisons using Streamlit web app
- Massive reduction in time and person-power requirements to process testbeam

Results

- For device w/o PTB, efficiency target comfortably met at $V_{\rm bias} = 600$ V.
- Device passed criteria at both DESY and SPS campagns.

FE.

- Device with PTB tested at DESY campaign, using linear FE.
- Effect of PTB structure clear to see, but still pass 97% efficiency criteria relatively comfortably.

4 GeV electrons, PTB, $V_{\rm bias} = 400$ V, THL= 1200 e.

4 GeV electrons, PTB, $V_{\rm bias} = 600$ V, THL= 1200 e.

- See similar behaviour in efficiency with threshold for both PTB and no PTB, but lower ceiling for the device with PTB.
- For device with no PTB, efficiency drops at high threshold. Likely eating into signal.

4 GeV electrons, without PTB, $V_{
m bias} =$ 600 V, varied threshold.

Differential and linear FE.

Summary

- Testbeam measurements made of irradiated prototype ITk pixel modules using RD53a readout, with different PTB structures
- New framework use for reconstruction and analysis
- Clear to see local efficiency impact of the PTB structure on the in-pixel efficiency maps
- Regardless, modules with and without PTB achieve a global efficiency comfortably above the 97% required level
- ullet Similar behaviour for both devices across $V_{
 m bias}$ and threshold scans