

Fermilab Test Beam Facility

Joe Pastika

10th Beam Telescopes and Test Beams Workshop

Introduction

- Fermilab Test Beam Facility (FTBF) Supports a wide program of research and detector R&D
 - 2 Beamlines (MTest and MCenter) can provide particles from 120 GeV protons to secondaries of ~200 MeV
- Irradiation Test Area (ITA) See <u>Evan Niner's talk</u>
 - Low energy, high rate
- Beam is available ~9 months a year

Where are FTBF and ITA?

Meson detector Building – west

Beamline Details

- 4 second beam spill every 60 seconds, available 24/7
- ~1000 to 900,000 particles per spill
- MTest
 - 120 GeV primary protons
 - 1-66 GeV secondary beam
 - ~2cm spot size
 - 1-4 week runs
- MCenter
 - Secondary beam
 - Two tertiary beamlines down to 200 MeV
 - longer term experiments

Beam Performance – MTest

Positive Beams Composition, Open Collimators 2016

<u>Table with energies, beam spread, percentages:</u>
http://ftbf.fnal.gov/mtest-beam-details-2/

Studies by E. Skup and D. Jensen

Negative Beams Composition, Open Collimators 2016

Facility Layout

MTest and MCenter beamline enclosures

Instrumentation Layout - MTest

Silicon Telescope

- Tracking telescope based on silicon strips and pixel planes
 - http://www.sciencedirect.com/sc ience/article/piiS016890021501 5521
- 5 µm resolution on DUT
- 3.8 x 3.8 cm coverage of silicon strips
- Moveable arms and motion table for sample positioning
- Pixel sensors upgraded
 - See talk by Ryan Heller & Lorenzo Uplegger

Who uses FTBF?

- 160 users from 18 different experimental efforts in FY22
- 18 Experimental efforts, 4 new efforts

Experiment by detector

Users by professional category

Experiment by research focus

Calorimeter Studies

- Electron Ion Collidor (EIC) and sPHENIX detector R&D
- General R&D for future detectors
- Advanced Particleastrophysics Telescope prototype

Tracking studies

CMS/ATLAS HL-LHC pixel tracking upgrades

GEM R&D

Mu2e Muon veto tests

Timing studies

- Rad hard precision timing detectors for LHC: LGAD, SiPM+LYSO
- LGAD sensors tested in "high rate" area matches rates predicted at CMS (see <u>talk by</u> <u>Ryan Heller</u>)

 Precision timing for EIC: LGAD, MCP-PMT, RPC

Other Efforts

 EMPHATIC: Measure hadron production to constrain flux for neutrino experiments

Test of "switchilator" sensitivity to charged particle beams

MCenter activities

- NOvA test beam detector.
 - Designed to reduce NOvA systematics
 - Set to uninstall at the end of this beam year
- Two new detectors to be installed in MCenter
 - LArIAT liquid argon TPC will be operated in the Jolly Green Giant magnet
 - High pressure gas TPC with MCPs will be tested

Becoming an FTBF user

- Talk to the facility about a <u>proposed experiment</u> and fill out a Technical Scope of Work
 - Agreement between test beam collaboration and the lab over what resources are used
 - Do you need significant engineering or tech support? Computing support? Will you have enough users to cover your shifts?
 - Document can be broad and cover multiple years and uses
- TSW information can be found here: http://programplanning.fnal.gov/tsw_orc/
 - Email us: <u>rominsky@fnal.gov</u> (Mandy), <u>edniner@fnal.gov</u> (Evan), <u>pastika@fnal.gov</u> (Joe)
 - Approvals typically take 4-6 weeks, depends on needs
- Scheduling for FY23 beam run (~Nov 2022 June/July 2023) will start soon, but reach out anytime!
 - MTest requests for typically 1-4 week periods with 12 hours of primary beam use, many groups can be accommodated at once
 - MCenter requests at lower energies, often longer periods, single user

Upcoming plans at FTBF

- LAPPD based time of flight system
 - Concept tested in 2019 Angelico, Evan. doi:10.2172/1637600.
 - Making use of ANNIE readout electronics, modified for use at FTBF
 - Measured time uncertainty of 19 ps
- Jolly Green Giant (JGG) refurbishment
 - 0.7 T large bore magnet
 - The large bore JGG magnet is needed by the LArIAT tests planed for next year
 - The magnet will be refurbished over the summer shutdown

Evolving FTBF/ITA demands

- FTBF is in high demand with usage near capacity each year
 - High demand for 120 GeV beam and tracking to support collider needs
 - Increased interest in high purity electron/muon beams from muon, dark matter, neutrino communities
 - Emerging interest from APRA-E and NASA
- Long delivery beamline to maintain (over a mile) with no added benefit
- Potential space for months to year long small experiments
- MCenter provides secondary/tertiary beams, but with a large configuration overhead

~1.5 Miles (2.4 km)

Future test beam facility proposal

- Ongoing accelerator upgrades to PIP-II and booster provide a great opportunity for a new test beam facility
 - PIP-II linac will provide high intensity source of 800 MeV protons
 - New location closer to accelerators makes facility more convenient and have less beamline to maintain
 - 4-6 beamlines
 - 120 GeV from MI
 - 8 GeV from booster
 - 800 MeV from PIP-II
 - Clean secondary lines for Electrons, Muons, and Pions
 - Collocate test beam and irradiation facilities
 - Dedicated infrastructure for control rooms, experimental staging, facility infrastructure
 - Room for small medium/long term experiments
 - Snowmass white paper

Summary

- The Fermilab Test Beam Facility is a user-oriented facility aimed at providing high energy particle beams for applications particle, nuclear, and beyond
- We are always working to improve the facility and our user's experience, suggestions are welcome!
- A big part of our mission is outreach, we encourage students to come and we support interns over the summer (restarted in person as of this summer)
- We look forward to seeing you at Fermilab! To learn more:
 - Slack Team: fnal-testbeam
 - Webpage: <u>ftbf.fnal.gov</u>
 - Listserv: test_beam@fnal.gov

Off-The-Shelf Data Acquisition (OTSDAQ)

- FNAL computing division developed, flexible and scalable system allowing integration with other devices
 - Based on XDAQ (CMS) and ArtDAQ (Fermilab)
- Tied into facility MWPCs, Cherenkov detectors, silicon strip telescope.
- Several groups (CMS outer tracking, CMS Timing, RD53 chip, LHCb)
 have integrated and taken fully synchronized data with the telescope

NIM+

- Fermilab built a board (NIM+) that accept NIM/TTL signals and it can be plugged in any FPGA board that has a standard FMC connector
- Firmware written to allow sync with a 40Mhz clock (LHC)
- Already used by multiple experiments
- Ethernet controlled can stay in enclosures
- Streams trigger data allowing multiple users to run at the same time with different trigger rates

