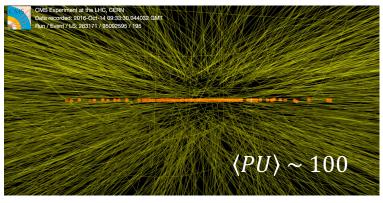
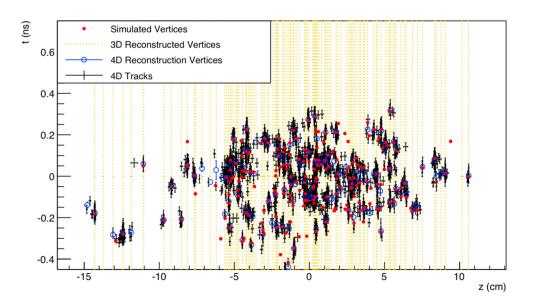
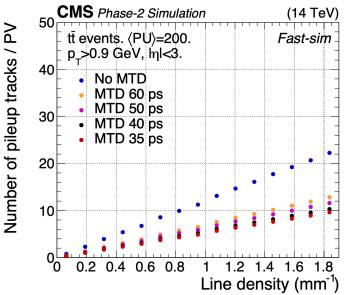
Test beam characterization of sensor prototypes for the CMS MTD barrel timing layer

John Dervan (Northeastern University) BTTB: 10th Beam Telescopes and Test Beams Workshop INFN and Università del Salento, Lecce (Italy) 22nd June, 2022



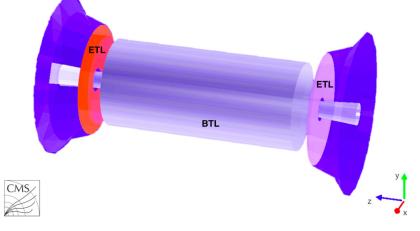
Background & Overview


Challenges of High-Luminosity LHC (HL-LHC)



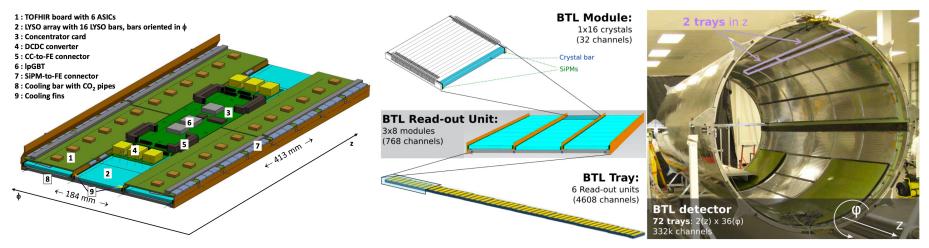
- Increased pileup
 - Nominal : $L_{inst} = 5.0 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (140 pileup)
 - Ultimate : $L_{inst} = 7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (200 pileup)
- Pileup + radiation damage → degrade particle
 ID/reconstruction efficiency
- Approach: exploit timing information to recover Phase 1 PU conditions via 4D vertex reconstruction

^A high-pileup event from 2016



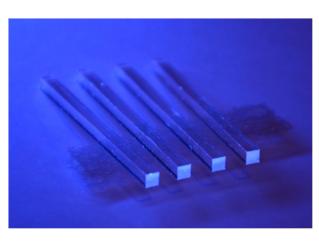
CMS MIP Timing Detector (MTD)

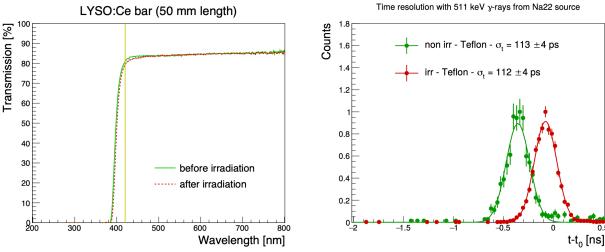
- Two subdetectors, the barrel (BTL) and endcap (ETL) timing layers, will provide hermetic coverage up to |η| < 3.0
- Designs fit requirements: different cumulative radiation dosages and development constraints
 - ETL: higher radiation dosage, more time for R&D, accessible during shutdown
 - BTL: constrained by installation timeframe, no access during shutdown
- Expected physics impact:
 - Improved particle isolation, vertex ID, p_T^{miss} reco
 - Time-of-flight detector for charged particle ID ightarrow improvements for heavy ion and flavor physics
 - Projected di-Higgs improvements summarized below


	Signal increase (%)		Expected significance	
Di-Higgs decay	BTL	BTL+ETL	No MTD	MTD
bbbb	13	17	0.88	0.95
bbττ	21	29	1.3	1.6
$bb\gamma\gamma$	13	17	1.7	1.9
bbWW			0.53	0.58
bbZZ			0.38	0.42
Combined			2.4	2.7

Barrel Timing Layer (BTL)

CMS


- 40-mm cylindrical layer housed inside CMS tracker support tube (TST)
- Installation inside TST imposes important limitations:
 - Much shorter R&D and installation timeline to align with tracker installation
 - BTL inaccessible during shutdown: sensor components must withstand radiation dosage through end of HL-LHC lifetime



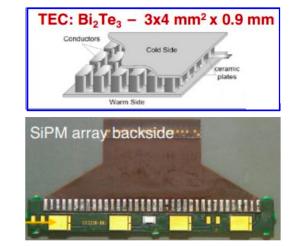
- Sensors:
 - Cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) crystal scintillators
 - Silicon photomultipliers (SiPMs) at each end
- Nominal operating temperature of -35°C (up to -45°C) to limit noise-induced timing jitter

LYSO:Ce Crystals

- Cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) crystal scintillation medium
- Well-studied in PET applications; potential vendors widely available
- Benefits:
 - High light yield ($\sim 4 \times 10^4$ photons/MeV)
 - Fast scintillation rise time (<100 ps)
 - Short decay time (~40 ns)
 - High density (7.1 g/cm³): MPV of MIP deposited energy ~0.86 MeV/mm
 - Exceptionally radiation-hard

Silicon Photomultipliers (SiPMs)

Benefits:

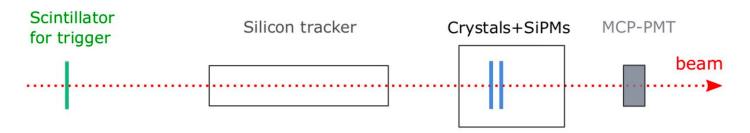

- Compact, robust, and insensitive to magnetic fields
- Photon detection efficiency (PDE) of 20–40%
- Optimal cell size of 15 μm chosen
- Good radiation tolerance

Challenges:

- Thermal noise (dark count rate, or DCR) increases with irradiation and temperature
- Linear drift in breakdown voltage with radiation exposure

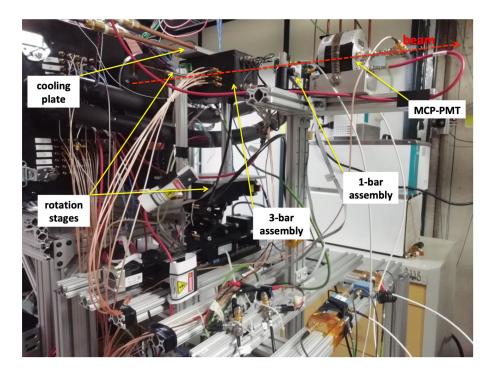
Solutions:

- Periodic SiPM annealing (40°C) during shutdown to mitigate radiation damage
- Reduce SiPM operating temperature using thermoelectric cooling (TEC)
- Dedicated noise cancellation circuit in ASIC
- Optimize operating point


Fermilab 2019 Test Beam

22 June 2022

John (JP) Dervan Test Beam Characterization of the CMS BTL


8

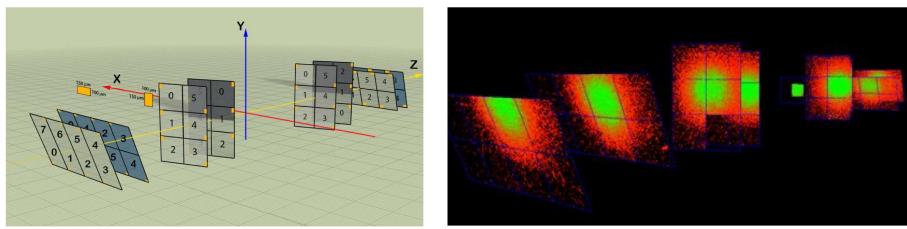
• Performed at FNAL Test Beam Facility (FTBF) using 20k–50k spills of 120-GeV protons

• Setup:

- Scintillation counter (10 cm²)
- Silicon tracker telescope
- Microchannel plate detector (MCP-PMT)
- LYSO:Ce crystals + SiPMs

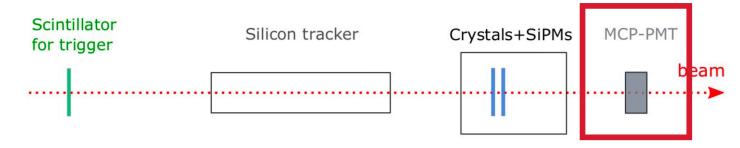
Full discussion: [arXiv:2104.07786v2]

CMS

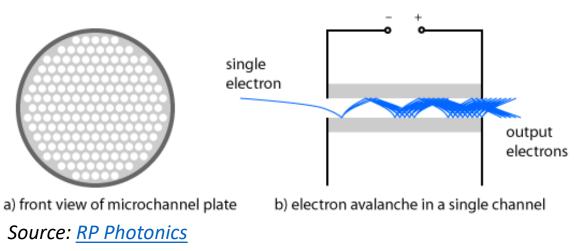


• Performed at FNAL Test Beam Facility (FTBF) using 20k–50k spills of 120-GeV protons

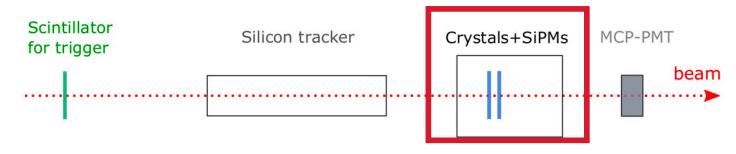
• Setup:


- Scintillation counter (10 cm²): trigger
- Silicon tracker telescope: spatial (x-y) information on the beam
- Microchannel plate detector (MCP-PMT)
- LYSO:Ce crystals + SiPMs

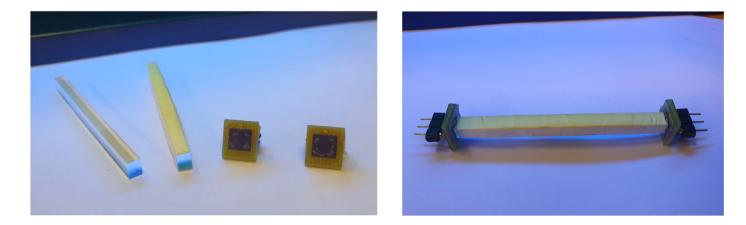
Source: FTBF Tracking Telescope [link]



Performed at FNAL Test Beam Facility (FTBF) using 20k–50k spills of 120-GeV protons


• Setup:

- Scintillation counter (10 cm²): trigger
- Silicon tracker telescope: spatial (x-y) information on the beam
- Microchannel plate detector (MCP-PMT): Photek 240, $\sigma_t \sim$ 12 ps; provides reference time
- LYSO:Ce crystals + SiPMs

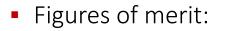


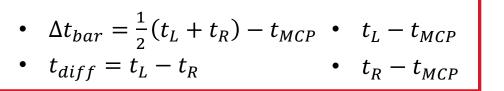
Performed at FNAL Test Beam Facility (FTBF) using 20k–50k spills of 120-GeV protons

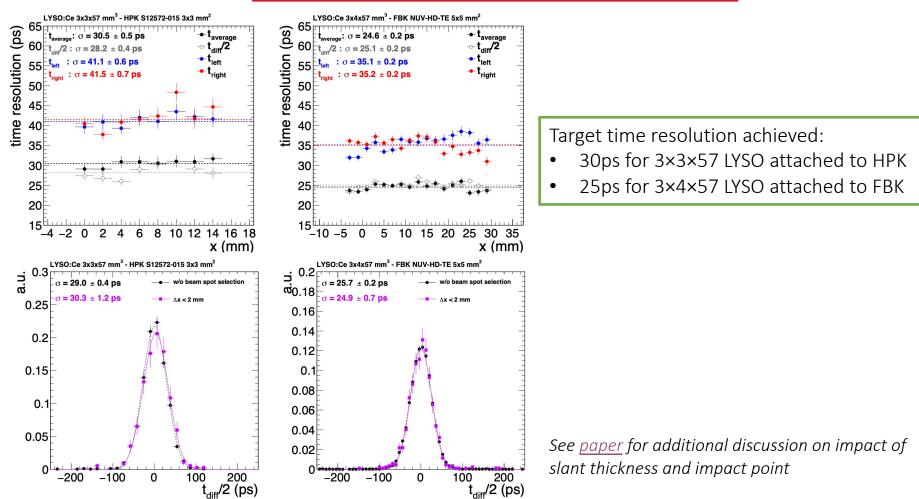
• Setup:

- Scintillation counter (10 cm²): trigger
- Silicon tracker telescope: spatial (x-y) information on the beam
- Microchannel plate detector (MCP-PMT): Photek 240, $\sigma_t \sim$ 12 ps; provides reference time
- LYSO:Ce crystals + SiPMs: different SiPM manufacturers + LYSO dimensions

• LYSO bars:


- Tested dimensions $3 \times t \times 57 \text{ mm}^3$ (varied thickness t between 2, 3, ad 4 mm)
- Variable radial thickness to maintain constant slant depth traversed by outgoing MIPs in CMS
- Units coated in Teflon layers to avoid light leakage + prevent damage
- SiPMs (unirradiated): two manufacturers
 - S12572-015 SiPMs from Hamamatsu (HPK); active area of 3x3 mm²
 - SiPMs from Fondazione Bruno Kessler (FBK); active area of 5x5 mm²
- Custom electronic boards to apply SiPM bias and perform readout (not BTL ASICs)


Sensor ID	Crystal dimensions	SiPM type	SiPM active area
	[mm ³]		[mm ²]
HPK1	$3 \times 3 \times 57$	HPK \$12572-015	3 × 3
HPK2	$3 \times 3 \times 57$	HPK S12572-015	3 × 3
HPK3	$3 \times 3 \times 57$	HPK S12572-015	3 × 3
FBK1	$3 \times 2 \times 57$	FBK NUV-HD-TE	5 × 5
FBK2	$3 \times 3 \times 57$	FBK NUV-HD-TE	5×5
FBK3	$3 \times 4 \times 57$	FBK NUV-HD-TE	5×5



Time Resolution

22 June 2022

- Improvements from MIP precision timing:
 - Pileup mitigation—recover CMS Phase 1 conditions in optimal scenario
 - Particle isolation, vertex identification, missing PT reconstruction, time-offlight measurement
- Test beam campaign of BTL sensor units achieved target time resolution (30 ps)
- Additional beam campaigns to test prototypes:
 - Study end-of-life sensor performance (irradiation scenarios) with TECs
 - Test TOFHIR ASIC and readout electronics performance

Thank you!

22 June 2022

John (JP) Dervan Test Beam Characterization of the CMS BTL

16