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Precision timing with LGADs
• Silicon sensors optimized for timing: Low Gain Avalanche Detectors (LGADs)

- Thin depletion region (50 micron): fast & uniform signals

- Internal gain: boost signal-to-noise (x10-30)
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3.2. Silicon sensors 101

Figure 3.5: A cross-section diagrams comparing a standard Silicon detector and an Ultra-Fast
Silicon Detector. UFSDs have an additional p implant providing the larger electric field needed
for charge multiplication.
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about 50 µm, yielding an almost perfect parallel plate configuration. Distortion due2617

to non saturated drift velocity is minimized by operating the sensor at a bias voltage2618

where the carriers’ velocity is saturated.2619

• sTDC: the effect of the TDC binning is discussed in Sec. 3.3.5.2620
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time of the HL-LHC. To meet these needs the ETL will be instrumented with Ultra-Fast Silicon2626

Detector (UFSD), planar silicon devices based on the LGAD technology [21, 22].2627

UFSDs are planar silicon sensors incorporating a low, controlled, gain in the signal formation2628

mechanism, see Figure 3.5. Charge multiplication in silicon sensors happens when the charge2629

carriers are in electric fields of the order of E ⇠ 300 kV/cm. Under this condition the electrons2630

(and to less extent the holes) acquire sufficient kinetic energy to generate additional e/h pairs.2631

A field value of 300 kV/cm can be obtained by implanting an appropriate charge density that2632

locally generates very high fields (ND ⇠ 1016/cm3). The gain has an exponential dependence2633

on the electric field N(l) = Noea(E)l , where a(E) is a strong function of the electric field and l2634

is the path length inside the high field region. The gain layer is realized through the addition2635

of a p-type implant and, to avoid breakdown, its lateral spread is controlled by deep n doped2636

implant, called JTE. Typical gain values are in the 10-30 range, modest compared to gains of2637

thousands or more in APDs or SiPMs.2638

Three vendors have successfully produced optimized UFSDs which have been tested by CMS2639

and are being considered for providing the ETL sensors, including Centro Nacional de Mi-2640

croelectronica (CNM), Barcelona [21, 56, 57], Fondazione Bruno Kessler (FBK) [58, 59], and2641

Hamamatsu Photonics (HPK) [60, 61].2642

Achieving good time performance at low gain requires silicon pixel sizes typically less than a2643

few mm2, to limit the sensor capacitance, implying that a large number of pixels are required2644

to cover the 7 m2 of each ETL endcap. The design studied in the 2017 CMS MTD Technical2645

Proposal (TP) used very large sensors, 5 cm ⇥ 10 cm, with 3 mm ⇥ 1 mm pixels. Our R&D and2646
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Traditional silicon detector

Low Gain Avalanche Detector

HPK LGAD prototype, 1.3 mm pads

• CMS Endcap Timing Layer: timestamp every track with 30-40 ps resolution!

arxiv:1704.08666

https://arxiv.org/abs/1704.08666
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LGADs under irradiation
• Gain layer de-activates with irradiation

• Increase bias voltage over time to maintain 

large signals.
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• Outer radius: 1270mm Æ 1190mm

• Inner radius coupled to inner support tube

• Design of the cooling manifolds at the periphery of 
the disks 

• Vertical orientation of the on-detector cooling 
channels

• Horizontal placement of modules and service hybrids

• 90deg wedges replaced with the Dees installed on 
the CE’s thermal screen

• PP0 behind the disks

• Increased space between the disks (due to thicker 
service hybrids)

• Implementation of longer service hybrids to cover the 
empty spaces at the detector rim

• Detailed layout of cables, fibers and cooling in ETL 
3D model

New mechanical 
structure

CMS Endcap Timing Layer (1 disk)

Inner radii: reach fluence of 1.5 x 1015 neq/cm2

pre-rad

8e14
1.5e15

HPK2 prototypes (beta source)

Ultra high E-field: 12 V per micron!
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LGAD mortality
• Anecdotal evidence in past for death of highly irradiated LGADs at test beams, at very 

high field.

- Historically, not clear if caused by environmental/mishandling issue, or intrinsic sensor failure mode.


• Several test beam campaigns at Fermilab dedicated to study of LGAD mortality

- 30 sensors studied December 2020 - March 2021 → understand death mechanism
- 20 sensors at extreme rate facility December 2021 → demonstrate safe operation regions


• Many key goals accomplished:

- Refine understanding of cause of death

- Collect statistics with diverse set of sensors

- Test treatments to prevent mortality

- Probe safe regions for operation and develop mitigation strategy.
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Mortality studies at Fermilab Test Beam Facility
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Rack to host 10x UCSC boards, 
cooled by glycol

Precision environmental control & 
monitoring

FTBF tracker

CMS ETL test stand

Is LGAD burnout caused by protons, or spontaneous?

Impact of gain, bias voltage, irradiation ?? 
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Mortality studies
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Beam profile

x [mm] x [mm]
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m
]

Single pad hit efficiency

Most sensors in 2x2 geometry

Most from HPK2

pre-irradiated 8e14-2.5e15 neq

• Measure beam profile with tracker.

• Align each sensor with beam based on single-ch readout.

• Carefully increase bias voltage

- ~3k protons on sensor per minute. Raise bias 25V after 100-200k protons.
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Example burnout event

7

25− 24− 23− 22− 21− 20− 19− 18− 17− 16− 15−
18

19

20

21

22

23

24

25

26

27

28
h0

Entries  65990
Mean x 21.09− 
Mean y   23.78
Std Dev x   1.498
Std Dev y   1.518

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h0

Entries  65990
Mean x 21.09− 
Mean y   23.78
Std Dev x   1.498
Std Dev y   1.518

amp[0]>15.0:y_dut[9]:(-x_dut[9]) {ntracks==1&&nplanes>10&&npix>0&&fabs(xResidBack)<500&&fabs(yResidBack)<500}

HPK 1.5e15 neq/cm2

Efficiency map, lower right pad.

• When death occurs, first observe short on bias 
supply


• Then, find LGAD waveform indicating moment of 
death


• Compare track position in fatal event with crater 
location.
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Example burnout event
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  1.518  1.518

HPK 1.5e15 neq/cm2

Burnout is decisively caused by proton!
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Burnout in PIN diode
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Even diodes die the same way→ gain is not needed.

Gamma-irradiated HPK PIN diode (50 micron)
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Conclusions from initial burnout studies (March 2021)
• All 50 micron sensors susceptible to proton-induced burnout at bias ≥ 600 V

- LGADs or PiN; any fluence: all die the same way.

➡ Gain is not important for death mechanism.

➡ Suceptibilty depends on voltage & thickness ONLY

• Suspected mechanism: 

- Rare, extremely high ionization events with energy deposit > 50-100 MeV

- Excess charge produces narrow conductive path across diode at extreme field: burnout 

due to high current density.

• Several attempted treatments didn’t prevent burnout:

- Encapsulation of sensor

- Reduce HV capacitance 

- Add resistance to protect from HV supply..

10
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Initial survival demonstrations
• Initial campaign also devoted 

time to survival demonstration

- 10 sensors exposed to maximum 

fluence at test beam facility

- Probe lifetime at bias slightly lower 

than burnout threshold.


• No deaths observed in 50 micron 
sensors ≤ 575 V (11.5 V/um)!


• Exposure ~ 109 protons

- But, not quite comparable to CMS 

environment…
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CMS 1 year charged particle exposure, 1 sensor inner radius

March 2021
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High-rate survival demonstration
• To achieve flux comparable to 

CMS, need to use high-rate 
beam facility, upstream of 
collimator.


• Achieve ~109 protons on 
target per minute, rather than 
105

12

High-rate area

Test beam facility

120 GeV protons
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Sensors used
• 17 irradiated sensors (Ljubljana), on UCSC 1-ch boards

• 2 pre-rad sensors for beam monitor, FNAL 26-ch boards

• All sensors in 5x5 geometry.
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Fluence

 [neq/cm2] # sensors

HPK2, 

50 micron

8e14 x4

1.5e15 x4

FBK3.2, 

45 micron

8e14 x1

1.5e15 x3

FBK3.2, 

55 micron

8e14 x1

1.5e15 x4
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New setup at high-rate area (December 2021)
• Built new setup to support 20 LGADs in high-rate beam

• Hazardous environment..

- High radiation, frequent SEUs, oxygen deficiency hazard, many barriers to entry

14

LGAD cold box

Electronics rack, shielded

Chiller



Ryan Heller6/21/22

Time [ns]
250− 200− 150− 100− 50− 0 50 100 150 200 250

Am
pl

itu
de

 [m
V]

0.35−

0.3−

0.25−

0.2−

0.15−

0.1−

0.05−

0
0.05

0.1

Measuring beam intensity
• Use LGADs themselves to monitor beam intensity! 

• Record one waveform per spill, for 10 millisecond duration. Count signals in 8 ch

15

Count individual protons in 8 channels! 1.6 μs “batches”, repeated each 11.2 μs “cycle”

Receive about 400k batches in 4 s, each minute.

protons in 19 ns buckets 
(53 MHz)
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Measuring beam intensity
• Use LGADs themselves to monitor beam intensity! 

• Record one waveform per spill, for 10 millisecond duration. Count signals in 8 ch
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10 ms snapshot 1.6 μs “batches”, repeated each 11.2 μs “cycle”

• Long exposures reveal time structure of beam and allow calibrating delivered flux.

- Large variation on O(1 ms) time scale

- Moderate variation on O(1 s) time scale.
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Aligning to beam
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• Study occupancy across sensor w/ 8-ch

• Follow gradient to align sensor

• With best alignment, occupancy in edge pads is 80-90% of center (wide beam)

• Final sensor occupancy: 200M protons / sensor / spill

- x2000 larger flux per sensor than max achieved in regular test beam (slightly less than expectation)

O
cc

up
an

cy
 [H

z]

160

180

200

220

240

260

280

300

320
310×

Run 47754 to 47777

Column
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

R
ow

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
Run 47754 to 47777Pre-alignment



Ryan Heller6/21/22

Aligning to beam
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• Study occupancy across sensor w/ 8-ch

• Follow gradient to align sensor

• With best alignment, occupancy in edge pads is 80-90% of center (wide beam)

• Final sensor occupancy: 200M protons / sensor / spill

- x2000 larger flux per sensor than max achieved in regular test beam (slightly less than expectation)
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ETL inner radius 1 year flux, 1 sensor

December 2021 • Delivered 1013 protons at 450, 
500, and 550 V with no deaths!


• Comparable exposure to 1 
year flux for a sensor in ETL


• Similar results for 45 and 55 
micron sensors from FBK


HPK 50 micron sensors
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• After survival phase, continue 
ramping to look for deaths 
beyond 11 V/um


• 4x HPK 1.5e15 deaths:

- 575 V, 605 V, 605 V, 610 V

- 11.5-12.2 V/um 

December 2021

ETL inner radius 1 year flux, 1 sensor

HPK 50 micron sensors
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Safe exposures demonstrated:

Exposure summary
• Demonstrated safe operation 

with flux comparable to 1 year 
at CMS in all 3 thicknesses!


• SEB threshold seems to 
roughly scale with thickness  
(~ constant field)


• FBK sensors with high 
radiation tolerance avoid 
dangerous region for entire 
life of detector.

21

ETL inner radius 1 year flux, 
1 sensor

December 2021
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Summary
• Two intensive test beam campaigns completed in 12 months.


• Understanding of single-event burnout mechanism greatly improved

- Definitively caused by single-particle interaction

- Susceptibility driven by thickness and bias voltage.


• Safe regions of operation established through realistic, high-rate tests probing 
flux comparable to the HL-LHC environment.


• Burnout can be avoided for full life of the CMS ETL without cost to 
performance.

22
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Proposed burnout mechanism
• Rare, large ionization event “Highly 

Ionizing Particle”

- Excess charge leads to highly localized 

conductive path

- Large current in narrow path→ “Single 

Event Burnout”


• Estimate >20 MeV deposit needed 
based on rate


• 120 GeV protons are ~ 10x more likely 
to yield burnout than typical LHC 
charged particles (e.g. 1 GeV pion)


• Need to probe farther in tail to ensure 
safety at lower bias voltage…

24

Probability to deposit at least X MeV in 50 µm (GEANT4)

120 GeV proton

1 GeV pion
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Measuring beam intensity
• Use LGADs themselves to monitor beam intensity! 

• Record one waveform per spill, for 10 millisecond duration. Count signals in 8 ch
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• 45 micron FBK sensors

• Safe operation at 9-11 V/um, 

close to CMS 1-year flux.


• 3x deaths in 1.5e15:

- 525 V, 540 V, 545 V

- 11.7 V/um to 12.1 V/um
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• 55 micron FBK sensors

• Safe exposures in 8-10 V/um, 

close to CMS 1-year flux.


• 4x deaths in 1.5e15:

- 600 V, 600 V, 640 V, 645 V

- 10.9 V/um to 11.9 V/um

• Lower field at death than 45 or 50 

micron sensors—scaling is not quite 
linear 

ETL inner radius 1 year flux, 1 sensor

December 2021
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Context for CMS Endcap Timing Layer (ETL)
• To avoid burnout, LGADs should remain at voltage ≤ 550 V (50-55 micron)

- HPK sensors can deliver σ < 35 ps up to 1e15 neq/cm2, then degrade slowly.

- FBK sensors can deliver σ < 35 ps to end of life (1.5e15)

• Only ~10% of sensors will exceed 1e15 neq/cm2, only in final ~20% of lifetime 

- Relevant only for few percent of ETL sensor-years

- For case of FBK sensors: no performance impact at all!

28
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Encapsulated sensors
• Two sensors completely covered with wirebond encapsulant (Sylgard 186)

• Crater clearly originates underneath encapsulation. No effect on lifetime or other properties.

29
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Example death event

30

 HPK2 Split 3 SE3 IP4, 1.5e15 neq/cm2

(not yet dead)

• HPK2 split 3 sensor, fluence 1.5e15 neq/cm2

- Pre-biased in-situ for 6 hours at 700 V

- Operated in beam for 2 hours at 500-600 V

- Destroyed after 2 minutes at 625 V.

First sign of death: HV short
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Example death event

31

LGAD waveforms in 10k triggers during 4s spill.  HPK2 Split 3 SE3 IP4, 1.5e15 neq/cm2

(not yet dead)
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Example death event
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Waveforms in fatal eventEvent 1804
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Event 1804  HPK2 Split 3 SE3 IP4, 1.5e15 neq/cm2

Saturated ringing in dying LGAD

No hits in 2 other active LGADs

Slightly large hit in MCP

(not yet dead)

Death within 1 ns of proton arrival.


