

The HIE-ISOLDE facility at CERN

World-leading facility in radioisotope production and acceleration:

- Large range of radioactive beams: from ⁶He ²³⁴Ra
- More than 1000 isotopes of about 70 elements
- Wide energy range from 0.45 to ~ 10 MeV/A

Recent physics cases investigated at HIE-ISOLDE (L. Gaffney, ISOLDE EPICS Workshop 2019).

- The objective is to carry out R&D program to study the possibility to develop a compact fragment separator using innovative concepts and technologies: (1) Mini-Storage ring, (2) CCT-Multifunction Superconducting solenoids, (3) FFAG, (4) Iron free magnets, (5) cryocooling
- Unprecedent mass resolution, angular and momentum acceptance. Low cost.
- Technological breakthrough for future fragment separators and mass spectrometers.

Leading research program with radioactive nuclei

PHYSICS OPPORTUNITIES

- ISRS as a stand-alone detector
- In coincidence with complementary detector arrays:
 - gamma- particle array Miniball + T-REX
 - Particle array GLORIA
 - Neutron array SAND
 - Multi-purpose reaction chamber SEC
 - Spectrometer ISS
 - Storage Ring

Benefit from the plans for a future extension of the HIE-ISOLDE experimental hall.

- Coulomb dissociation at a few MeV/u has rarely been used despite having much high cross sections
 - ✓ Core fragments ~15°
 - Coincidence with the neutrons, particles and gammas ejected in the breakup.
- Direct transfer reactions in inverse kinematics
 - ✓ Mainly when light outgoing particle is a neutron
 - ✓ Cone ranges from ±15° for light projectiles
 - ✓ About ±1° for heavy beams
- Nuclear structure studies around N≈82, 126
- Reactions relevant for the s, p and rp process nucleosynthesis around Z \approx 50 and Z \approx 82

- Multinucleon transfer reactions, via deep inelastic, quasielastic and quasi-fission reactions
 - ✓ Analyse individual exit channels.
 - ✓ Production of exotic nuclei and states so far unobserved
 - ✓ Coincidence with gammas and neutrons from decay.
 - ✓ Direct or inverse kinematics with light or heavy targets
 - The spectrometer should be able to rotate to cover the grazing angle
- Neutron-rich nuclei in Terra Incognita (78Ni, r-nuclei ~N=126)
- Shell-quenching and the r-process

Fusion evaporation reactions in inverse kinematics.

- Selection of fusion evaporation residues
- lifetime measurements using standard and triple foil plungers

Low energy transfer, breakup and fusion reactions.

- Reaction dynamics studies at low energies ~5 MeV/A
- Emphasize collective behaviour associated with nucleon correlations.
- Beam-like fragments in coincidence with neutrons and gammas

Physics program: we should look also for cases where nuclear physics, astrophysics and particle physics could all benefit (ie. physics BSM). Any ideas/contributions will be very welcome.

Momentum acceptance	± 10%	Solid angle	100 msr
Resolving power $p/\Delta p$	2000	Charge resolution $\Delta Q/Q$	1/70 (FWHM)
Angular acceptance	+/- 10°	Mass resolution $\Delta M/M$	1/250 (FWHM)
Angular resolution	0.1°	Rotation	0 - 70°

Table 1. Minimum spectrometer requirements

