Dealing with dynamic
and mixed workloads

BY STEFANO DAL PRrRA

INFN

HTCondor WS, 2021, Sep 20

Email: dalpra@infn.it

INFN-T1, Current Status (HTC-CE/HTC, 2020)
e (6+1)xHTC-CE, 1 x CM, 875 x WN, (40000 Cpus, ~ 435 KHS06)

e 1 x SN for Remote Submission (from local Ul, auth via FS_REMOTE)

e HTC 8.8.15, HTC-CE, 3.4.1

e We plan upgrading to HTC 9.0.5, HTC-CE 5.1 in the next days

From last year talk about LSF—HTC migration

e Need (or wish) to improve our fairshare setup to consider different HS06 of WNs.
Useful when job distribution of one AcctGroup is not homogeneus through the
nodes.

This talk is mostly about what has been done about the above bullet. A new policy is
in use from Early July 2021.

Usergroups, workloads, pledges and shares

e ~ 50 User groups: 24 Grid VOs, ~ 25 local.
e LHC VOs are the 4 major players (total pledge sum up to 412 KHS06)
e cach group has GROUP_QUOTA_DYNAMIC_<group>=z; and) z;=1.0

Multicore and singlecore

Note: in the following, sc — singlecore, mc or mcore — multicore.
mc — RequestCpus = 8 in job.ad

e Multicore jobs are ~42% (6 months average)

e 2,48 core (mostly 8; other size used by non-LHC groups)
e CMS — mc only, ATLAS — (quickly) variable mix

e ALICE — steady mix (from May '21), LHCb — sc only

LHC VOs jobs, last 6 months

cms - HS06
200 K
150 K h
100 K
50 K
i
04/01 05/01 06/01 07/01 08/01 09/01
— hs06 Avg 881K — hsD6_mc Avg BB.1K — hsO6_sc Avg 4
atlas - HS06
150 K
100 K Iyl 1
W '
i
M I|
50K I w “
[T
0 ﬁ._ v

04/01

05/01
— hs06 Avg: 810K

06/01 07/01
— hsD6_mc Avg: 63.0 K

08/01 09/01
— hs06_sc Avg: 180K

125K

100K

— hs0b Avgi 643 K

alice - HS06

'_"TT r‘ H
l-L|| ﬂ] l“

05/01 06/01 0?!01
— hsD6_mc Avg:11.6 K

04/01

08/01
— hs06_sc Avg: 52.7 K

Iheb - HS06
200K
150 K
100K
50 K
0
04/01 05/01 06/01 07/01 08/01 09/01
— hs06 Avg: 1184 K — hsDé_mc Avg:0 — hsO6_sc Avg: 1184 K

09/01

Multicore provisioning

Initially: DEFRAG and recipe from the htcondor wiki

Later: also added a set of statically dedicated nodes.

Problems

It

Oy 2R e DY)

Unused slots during mcore shortage, or overpledge of a group over another one
un-even opportunities: sc jobs tend to start sooner than mc of the same group
mcore of some groups last much longer than others (days vs hours)

fairshare makes no distinction on sc and mc and is unaware of different core power

whenever a mc job ends (and claim expired) one sc is likely to be the “next one” in
queue and claim one of 8 just freed cores. Thus a new defrag time is needed.

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToMatchMulticoreAfterDrain

Ideas for an alternative setup

1. Adding a grace time: when a mc job ends, only accept another mc for some time.

2. Order groups having pending jobs by expected HS06 usage - current HS06 usage
(also consider size of pending jobs). First groups are “rich”, last are “poor”.

3. have (a subset of) machines imposing an upper limit to the rich, and accepting jobs
from the poor group: mc or sc, depending on which has more pending.

Implementation

1. A STARTD cronjob defines a boolean machine classad MC_GRACE defined as
True if 8 Cpus are free for less than a few minutes (currently: 8 mins).

2. This requires centrally collecting data for all running and pending jobs (see below)

3. Another STARTD cronjob (JOB_CTL) to set a few more custom machine classads

Collecting data Every 17 minutes we run:

condor_q -global -all -cons ’Member(JobStatus,{1,2}) && (JobUniverse != 7)’ \
-af JobStatus ’split((RemoteHost ?7: "u@PEND.t1"),"@.")[1]’> \

’split (AcctGroup,".") [0]’> ’time() - (JobStartDate ?7: time())’> \
’CpusProvisioned 7: min({RequestCpus ?7: 1,8})° \

>((int (MATCH_t1_wn_hs06 ?7: 400) + 0.0)/(MATCH_TotalSlotCpus 7: 40))°

MATCH_t1_wn_hsO6 = node power as machine classad, inherited by the job
MATCH_TotalSlotCpus = same as NUM_CPUS, inherited by the job
NOTE: We already collect elsewhere these data for monitoring

The output is worked on and appended to an auxiliary shares_Error.log file:

TO VO PLEDGE DC SC MC DHS DPHS PSC PMC
1627101243 cms 87100 -542 0] 4888 -3321 -29403 0 12784
1627101243 atlas 105300 -236 1608 4720 -489 -32021 4 2572
1627101243 alice 71400 1150 4170 1432 12594 -8785 242 410

Final result goes to a shared file:

condor_q -glob ... -af

sharectl.py || /shared/sharectl.txt

AcctGroup_hs06.txt

The sharectl file

Since CMS has less than expected and ALICE has more, we reduce by 8 the maximum
number of allowed ALICE cores per machine. We do this according to the number of
pending CMS jobs. We set this target into the shared file, which looks like this:

~$ cat /shared/sharectl.txt
cn-609-05-06 alice 56 cms 8
cn-610-02-03 alice 56 cms 8
cn-608-06-06 alice 56 cms 8

The JOB_CTL cronjob. Run by STARTD every 13 mins. It sets the following classads:

cn-609-05-06 ~]# condor_status -comp -af:1ln tl_CurrentJobs tl_TargetGroups tl_Targetcores
t1l_CurrentJobs = alice:64:1hcb:3:atlas:5

tl_TargetGroups = { "alice","cms" }

tl_Targetcores = { 56,8 } # { 0,0 } means no target

It checks for its hostname into sharectl.txt and sets t1_Target* accordingly

Now to the START expression (just a little bit cumbersome)

cn-609-05-06 ~]# ccv StartJobs
True && (!t1_overheat) && (tl_mc_grace) && tl_sharectl

#Prevent singlecore when MC_GRACE is True
cn-610-05-06 ~]# ccv tl_mc_grace
((TARGET.RequestCpus > 1) || ((TARGET.RequestCpus == 1) && !(MC_GRACE ?7: False)))

cn-610-05-06 ~]# ccv tl_sharectl

((t1_Targetcores[0] =7= 0) || \

((C split(AcctGroup,".") [0] =7= t1_TargetGroups[1] && RequestCpus =7= t1_Targetcores[1]) || \
(AcctGroup =7= tl1l_TargetGroups[0] && \

(t1_Targetcores[0] 7: 0) > int(split(tl_CurrentJobs ?: "none:0",":")[1]))))

cn-609-05-06 ~]# condor_status -comp -af:1ln tl_CurrentJobs tl_TargetGroups tl_Targetcores
t1_CurrentJobs = alice:64:1hcb:3:atlas:5

t1l_TargetGroups = { "alice","cms" }

t1l_Targetcores = { 56,8 } # { 0,0 } means no target

How does it work?
Started on July 2021, some stop (kernel upgrade and reboot). Steady from August.
ALICE, cumulative accounting (HS06 h). 3 months, before and after

hs06_alice cumulative hs06_alice cumulative

7.0 Mil 7.0 Mil
6.0 Mil 6.0 Ml

5.0 Mil

5.0 Mil

4.0 Mil 4.0 M

3.0 M 3.0 Mib

2.0 Mil 2.0 Mil
B ..|||II||||""||H L .||I|||||||||||

12724 0/01 01/08 01116 01724 02/01 0208 0205 0222 0301 03/08 0316 06/23 o7/ O7/0B 076 0724 0B/01 0B/08 08/16 08/24 0801 0%/08 0%/16
hie — pledge — hic pledge

December 17 to March 16 June 16 to September 16

dashed line is target value.

ALICE, ATLAS, 30 days, old setup vs new

LHCb, CMS, 30 days, old setup vs new

Observations
e This setup is active on a subset (~50%) of all computing power.
e The DEFRAG daemon was stopped a few days after

e The Errors used to compute sharectl.log are in HSO6 units.

Possible improvements

e The control policy only takes the latest value for e4(t) = current - expected quota.
We expect better results by averaging it with past values.

e The same should hold for pending jobs, to ensure that we consider groups having a
regular submission rate

	INFN-T1, Current Status \(HTC-CE/HTC, 2020\)
	From last year talk about LSF→HTC migration
	Usergroups, workloads, pledges and shares
	Multicore and singlecore
	Multicore provisioning
	Problems
	Ideas for an alternative setup
	Implementation
	Collecting data
	The sharectl file
	The JOB_CTL cronjob.
	Now to the START expression
	How does it work?
	Observations
	Possible improvements

