
Negotiator Policy and

Configuration

Greg Thain

Fairness in HTCondor

and how to avoid it

› Understand role of negotiator

› Learn how priorities work

› Learn how preemption works

› Encourage thought about possible policies!

Agenda

Have a user get 2x cpus of another

Schedule multicore jobs before single

Guarantee every job gets one hour runtime

Put a limit on licensed jobs in the pool

After this talk, you should know..

Overview of condor

3 sides

Submit
Execute

Central

Manager

› Near sighted

› 3 inputs only:

Machine

Running Job

Candidate Running Job

› Knows nothing about the rest of the system!

Startd Mission Statement

Run jobs on

slots the negotiator

has assigned to submitters.

Inputs:

All the jobs in that schedd

All the slots given to it by the negotiator

Schedd mission

Schedd Can:

Re-use a slot for > 1 job (in succession)

Pick which job for a submitter goes first

Schedd cannot:

Reassign slots from one submitter to other

Schedd mission

Submitters: what are they?

User: an OS construct

Submitter: Negotiator construct

condor_userprio output

 submitters used in accounting and scheduling

Submitter vs User

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

1 Owner: 1 submitter

Executable = somejob

Universe = vanilla

…

queue

Submit UID “Owner” “Submitter”

gthain gthain gthain@UID_DOMAIN

1 Owner: 2 submitters

Executable = somejob

Universe = vanilla

nice_user = true

queue

Submit UID “Owner” “Submitter”

gthain gthain nice-user.gthain@UID_DOMAIN

Assign the slots of the whole pool

Negotiation Mission

to submitters based on some policy that’s ‘fair’

All the slots in the pool

All the submitters in the pool

All the submitters’ priorities and quotas

One request per submitter at a time

Negotiator Inputs

Periodically tries to:

Rebalance ratio slots assigned to submitters

Via preemption, if enabled

Via assigning empty slots if not

Negotiator is always a little out of date

How the Negotiator Works

Simplest Negotiator (+ schedd) policy

Useful for pool wide, across user limits

Concurrency Limits

> 100 running NFS jobs crash my server

License server only allows X concurrent uses

Only want 10 database jobs running at once

Useful Concurrency Limits:

add to negotiator config file

(condor_reconfig needed):

Concurrency Limits:

How to Configure

NFS_LIMIT = 100

DB_LIMIT = 42

LICENSE_LIMIT = 5

Concurrency Limits:

How to use
Add to job ad

Executable = somejob

Universe = vanilla

…

ConcurrencyLimits = NFS
queue

Concurrency Limits:

How to use
OR

Executable = somejob

Universe = vanilla

…

ConcurrencyLimits = NFS:4
queue

Concurrency Limits:

How to use
Add to job ad

Executable = somejob

Universe = vanilla

…

ConcurrencyLimits = NFS,DB
queue

Have a user get 2x cpus of another

Schedule multicore jobs before single

Guarantee every job gets one hour runtime

Put a limit on licensed jobs in the pool

After this talk, you should know..

TRUTH!

Concurrency limits very “strong”

Can throw off other balancing algorithms

No “fair share” of limits

Part of the picture

1. Get all slots in the pool

2. Get all jobs submitters in pool

3. Compute # of slots submitters should get

4. In priority order, hand out slots to submitters

5. Repeat as needed

Main Loop of Negotiation Cycle

1. Get all slots in the pool

2. Get all jobs submitters in pool

3. Compute # of slots submitters should get

4. In priority order, hand out slots to submitters

5. Repeat as needed

The Negotiator as Shell Script

1: Get all slots in pool

1: Get all slots in pool

$ condor_status

1: Get ‘all’ slots in pool

NEGOTIATOR_SLOT_CONSTRAINT = some classad expr

NEGOTIATOR_SLOT_CONSTRAINT

Defaults to true:

Defines what subset of pool to use

For sharding, etc.

1: Get all slots in pool

$ condor_status –af Name State RemoteOwner

slot1@... Claimed Alice

slot2@... Claimed Alice

slot3@... Claimed Alice

slot4@... Unclaimed undefined

slot5@... Claimed Bob

slot6@... Claimed Bob

slot7@... Claimed Charlie

slot8@... Claimed Charlie

1: Get all slots in pool

$ condor_status –af Name RemoteOwner

Slots

Alice

Bob

Charlie

Unclaimed

2: Get all submitters in pool

$ condor_status -submitters

2: Get all submitters in pool

$ condor_status -submitters

Name Machine RunningJobs IdleJobs

Alice submit1 4 4

Bob submit1 2 100

Charlie submit1 2 0

Danny submit1 0 50

2: Get all submitters in pool

$ condor_status -submitters

Name Machine RunningJobs IdleJobs

Alice submit1 4 4

Bob submit1 2 100

Charlie submit1 2 0

Danny submit1 0 50

Tricky

Based on historical usage

3:Compute per-submitter “share”

3a: Get historical usage

$ condor_userprio -all

3a: Get historical usage

$ condor_userprio -all

UserName Effective Real Priority Res

Priority Priority Factor in use

Alice 3100 3.1 1000 4

Bob 4200 4.2 1000 2

Charlie 1500 1.5 1000 2

Danny 8200 8.2 1000 0

3a: Get historical usage

UserName Effective Real Priority Res

Priority Priority Factor in use

Alice 3100 3.1 1000 4

Bob 4200 4.2 1000 2

Charlie 1500 1.5 1000 2

Danny 8200 8.2 1000 0

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑖𝑜 = 𝑅𝑒𝑎𝑙𝑃𝑟𝑖𝑜 X 𝑃𝑟𝑖𝑜𝐹𝑎𝑐𝑡𝑜𝑟

Real Priority is smoothed historical usage

Smoothed by PRIORITY_HALFLIFE

PRIORITY_HALFLIFE defaults 86400s (24h)

So What is Real Priority?

Actual Use vs Real Priority

PRIORITY_HALFLIFE = 1

Another PRIORITY_HALFLIFE

3a: Get historical usage

$ condor_userprio -all

UserName Effective Real Priority Res

Priority Priority Factor in use

Alice 3100 3.1 1000 4

Bob 4200 4.2 1000 2

Charlie 1500 1.5 1000 2

Danny 8200 8.2 1000 0

› Effective Priority is the ratio of the pool

that the negotiator tries to allot to submitters

Lower is better, 0.5 is the best real priority

Effective priority:

Alice deserves 2x Bob & Charlie

Alice: 4

Bob: 2

Charlie: 2 (Assuming 8 total slots)

UserName Effective Real Priority Res

Priority Priority Factor in use

Alice 1000 1.0 1000 4

Bob 2000 2.0 1000 2

Charlie 2000 2.0 1000 2

So What is Priority Factor?

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑖𝑜 = 𝑅𝑒𝑎𝑙𝑃𝑟𝑖𝑜 X 𝑃𝑟𝑖𝑜𝐹𝑎𝑐𝑡𝑜𝑟

Priority factor lets admin say

If equal usage, User A gets 1/nth User B

$ condor_userprio –setfactor alice 5000

UserName Effective Real Priority Res

Priority Priority Factor in use

Alice 1000 1.0 1000 4

Bob 2000 2.0 1000 2

Charlie 2000 2.0 1000 2

3 different PrioFactors

Gives Alice 2x Bob

When both have jobs

Either Alice or Bob can use whole pool when

other is gone

Priority Factor pop quiz

$ condor_userprio –setfactor alice 500

$ condor_userprio –setfactor bob 1000

Whew! Back to negotiation

1. Get all slots in the pool

2. Get all jobs submitters in pool

3. Compute # of slots submitters should get

4. In priority order, hand out slots to submitters

5. Repeat as needed

Target allocation from before

User Effective

Priority

Goal

Alice 1,000.00 4

Bob 2,000.00 2

Charlie 2,000.00 2

Assume 8 total slots (claimed or not)

Look at current usage

User Effective

Priority

Goal Current

Usage

Alice 1,000.00 4 3

Bob 2,000.00 2 1

Charlie 2,000.00 2 0

Diff the goal and reality

User Effective

Priority

Goal Current

Usage

Difference

(“Limit”)

Alice 1,000.00 4 3 1

Bob 2,000.00 2 1 1

Charlie 2,000.00 2 0 2

In Effective User Priority order,

Find a schedd for that user, get the request

Limits determined, matchmaking

starts

User Effective

Priority

Difference

(“Limit”)

Alice 1,000.00 1

Bob 2,000.00 1

Charlie 2,000.00 2

Have a user get 2x slots of another

Schedule multicore jobs before single

Guarantee every job gets one hour runtime

Put a limit on licensed jobs in the pool

Three Truths and one Lie!

“Requests”, not “jobs”

$ condor_q –autocluster Alice

Id Count Cpus Memory Requirements

20701 10 1 2000 OpSys == “Linux”

20702 20 2 1000 OpSys == “Windows”

Match all machines to requests

Id Count Cpus Memory Requirements

20701 10 1 2000 OpSys == “Linux”

slot1@... Linux X86_64 Idle 2048

slot2@... Linux X86_64 Idle 2048

slot1@... Linux X86_64 Idle 1024

slot2@... Linux X86_64 Claimed 2048

slot1@... WINDOWS X86_64 Claimed 1024

By 3 keys, in order

NEGOTIATOR_PRE_JOB_RANK

RANK

NEGOTIATOR_POST_JOB_RANK

Sort All matches

NEGOTIATOR_PRE_JOB_RANK

Strongest, goes first over job RANK

RANK

Allows User some say

NEGOTIATOR_POST_JOB_RANK

Fallback default

Why Three?

Policy:

“I want all my fast machines filled first”

PRE_JOB_RANK use case

NEGOTIATOR_PRE_JOB_RANK = mips

Up to the limit specified earlier

If below limit, ask for next job request

Finally, give matches away!

slot1@... Linux X86_64 Unclaimed 2048

slot2@... Linux X86_64 Unclaimed 2048

slot1@... Linux X86_64 Claimed 2048

Done with Alice, on to Bob

User Effective

Priority

Difference

(“Limit”)

Alice 1,000.00 1

Bob 2,000.00 1

Charlie 2,000.00 2

Assumed every job matches every slot

And infinite supply of jobs!

… But what if they don’t match?

There will be leftovers – then what?

But, it isn’t that simple…

This whole cycle repeats with leftover slots

Again in same order…

Lather, rinse, repeat

Preemption: Yes or no?

Tradeoff: fairness vs. throughput

(default: no preemption)

Big policy question

PREEMPTION_REQUIREMENTS = false

Evaluated with slot & request ad. If true,

Claimed slot is considered matched, and

Subject to matching

Preemption: disabled by default

PREEMPTION_REQUIREMENTS=\

RemoteUserPrio > SubmitterPrio * 1.2

Example PREEMPTION_REQs

› Sorts matched preempting claims

PREEMPTION_RANK = -TotalJobRunTime

PREEMPTION_RANK

Can be used to guarantee minimum time

E.g. if claimed, give an hour runtime, no

matter what:

MaxJobRetirementTime = 3600

Can also be an expression

MaxJobRetirementTime

Upper bound on cpus any one user gets

$ condor_userprio –setceiling username 100

Submitter Ceiling

Have a user get 2x slots of another

Schedule multicore jobs before single

Guarantee every job gets one hour runtime

Put a limit on licensed jobs in the pool

Three Truths and one Lie!

Where to go for more help

htcondor.readthedocs.io

htcondor-users email list

htcondorproject.org

Thank You!

