Calorimeter Upgrade Meeting

Analog Electronics COTS design

22/jun/2010

Main ideas of COTS

- Commercial Off The Shelf
 - Intended to be cheaper than ASIC
 - Easy to find
 - Commercially tested, no risk of mistakes in chip design
 - Much faster and easyer design and test
 - Not the same integration level
 - Not the same flexibility
 - Not the same performance

Current CALO reminder

Current CALO scheme [1]

Current CALO reminder

- Clipping with delay lines
 - In the PMT Base

Current CALO reminder

Integration

Delayed Lines Integrator

Noise Problematic

- Reducing the gain in the PMTs → less signal and same noise!
- Low noise needed
- Difficult with COTS \downarrow
- Noise in the

PMT base

- Super Common Based Amplifier
- ATLAS LAr CALO uses one of those (4 chan)

Space is not an issue (LAr Calo Board)

Manipulate the PMT's base to reduce noise

- Manipulate the PMT's base to reduce noise and relax system specifications
 - The resistor in the PMT's base has some contribution to noise, we could get rid of it.
 - Clipping in the base reduces useful signal, we would remove it.
 - With greater signal the signal/noise ratio would increase.

Different Clipping Approach

- Clipping after amplifying
 → Impedance problem...
- Equivalent system found, same impulse response but no impedance problems.

Scheme with Differential operational amplifier

Scheme with Differential operational amplifier

Schematic of the adaptation system

Equations of the system

$$Z_{B} = R_{B} || (r_{d} + R_{L}) (hfe + 1)$$

$$Z_{OUT} = R_{L} || r_{d} + \frac{Z_{0} || R_{B}}{hfe + 1}$$

$$r_{d} = \frac{hie}{hfe + 1}$$

 $hie \approx 100$ $hfe \approx 500$ $r_d \approx 0.2$ $R_L \approx 1 \text{K5}$ $R_B \approx 416 \text{K}$

 $Z_B \approx 230 \text{K}$ $Z_{OUT} \approx 2$ $Gain \approx 1$ $C \approx some \, nF$ Power Consumption $\approx 3_{16}^{\text{mW}}$

Different approach to same idea, no loop

Amplifying Stage

Clipping Stage

Integrator Input

Integrator Output

ADC Selection

- In order to make the proper interface between the analogical part and the ADC it is necessary to have it previously selected.
- Our ADC needed 12 bits resolution, at least 40MHz conversion frequency and it was also desirable a small package due to space restrictions.
- The more suitable components for our application where:
 - Texas Instruments ADS6122
 - 1 ADC/Chip but 5x5mm only, LVDS, DDR!
 - Texas Instruments ADS6222
 - 2 ADC/Chip, LVDS, DDR!
 - Analog Devices AD9238
 - 2 ADC/Chip, LVTTL.

ADC Selection

- Analog Devices AD9238
 - One sampling clock per channel
 - Optional multiplexing
 - No RAM configuration

Some Measurements

Some Measurements

Further Steps

- Finish the prototype and measure all the real life effects
- Perform noise measurements and tradeoff with reflection coefficient
- Fine tune shaping method
- Measure ADC response
- Tests with digital part

• If more information needed...

Input Stage Gain

Input Stage Impedance

Input Stage Reflection Coefficient

Output Zoom

- Linearity
 - Definition: Charge/Voltage [C/V]
 - Simulated Linearity Error dependin on input pulse amplitude

