Calorimeter Upgrade Meeting

Analog Electronics
COTS design
22/jun/2010

Main ideas of COTS

- Commercial Off The Shelf
- Intended to be cheaper than ASIC
- Easy to find
- Commercially tested, no risk of mistakes in chip design
- Much faster and easyer design and test
- Not the same integration level
- Not the same flexibility
- Not the same performance

Current CALO reminder

- Current CALO scheme [1]

[1] LHCb Calorimeter TDR (CERN-LHCC-2000-036)

Current CALO reminder

- Clipping with delay lines
- In the PMT Base

Current CALO reminder

- Integration
- Delayed Lines Integrator

Noise Problematic

- Reducing the gain in the PMTs \rightarrow less signal and same noise!
- Low noise needed
- Difficult with COTS
- Noise in the

PMT base

Possible Solutions with COTS

- Super Common Based Amplifier
- ATLAS LAr CALO uses one of those (4 chan)

Possible Solutions with COTS

- Space is not an issue (LAr Calo Board)

Possible Solutions with COTS

- Manipulate the PMT's base to reduce noise

Possible Solutions with COTS

- Manipulate the PMT's base to reduce noise and relax system specifications
- The resistor in the PMT's base has some contribution to noise, we could get rid of it.
- Clipping in the base reduces useful signal, we would remove it.
- With greater signal the signal/noise ratio would increase.

Different Clipping Approach

- Clipping after amplifying \rightarrow Impedance problem...
- Equivalent system found, same impulse response but no impedance
 problems.

Studied Architectures (I)

Studied Architectures (I)

Studied Architectures (II)

- Scheme with Differential operational amplifier

Studied Architectures (II)

- Scheme with Differential operational amplifier

Studied Architectures (II)

- Schematic of the adaptation system

- Equations of the system

$$
\begin{array}{lll}
Z_{B}=R_{B} \|\left(r_{d}+R_{L}\right)(h f e+1) & \text { hie } \approx 100 & Z_{B} \approx 230 \mathrm{~K} \\
Z_{\text {OUT }}=R_{L} \| r_{d}+\frac{Z_{0} \| R_{B}}{h f e+1} & r_{d} \approx 0.2 & Z_{\text {OUT }} \approx 2 \\
r_{d}=\frac{h i e}{h f e}+1 & R_{L} \approx 1 \mathrm{~K} 5 & \text { Gain } \approx 1 \\
& R_{B} \approx 416 \mathrm{~K} & \text { PowerenF Consumption } \approx 3 \mathrm{~mW}
\end{array}
$$

Studied Architectures (III)

Studied Architectures (III)

- Different approach to same idea, no loop

Studied Architectures (III)

Amplifying Stage

Amplifier

Studied Architectures (III)

Clipping Stage

Shaper

Studied Architectures (III)

- Integrator Input

Studied Architectures (III)

- Integrator Output

Output
(V) : t(s)

$\mathrm{X} 1=12.182 \mathrm{n}, \mathrm{Y} 1=1.4177$
$\mathrm{X} 2=62.841 \mathrm{n}, \mathrm{Y} 2=1.507$
DeltaX $-50.659 n$
DeltaY 0.089246
length $=0.089246$
slope $=1.7617 \mathrm{meg}$
(
(V) : $1(\mathrm{~s})$

ADC Selection

- In order to make the proper interface between the analogical part and the ADC it is necessary to have it previously selected.
- Our ADC needed 12 bits resolution, at least 40 MHz conversion frequency and it was also desirable a small package due to space restrictions.
- The more suitable components for our application where:
- Texas Instruments ADS6122
- 1 ADC/Chip but $5 \times 5 \mathrm{~mm}$ only, LVDS, DDR!
- Texas Instruments ADS6222
- 2 ADC/Chip, LVDS, DDR!
- Analog Devices AD9238
- 2 ADC/Chip, LVTTL.

ADC Selection

- Analog Devices AD9238

- One sampling clock per channel
- Optional multiplexing
- No RAM configuration

First Set of Prototypes

Some Measurements

Some Measurements

- Zin

Further Steps

- Finish the prototype and measure all the real life effects
- Perform noise measurements and tradeoff with reflection coefficient
- Fine tune shaping method
- Measure ADC response
- Tests with digital part

Backup Slides

- If more information needed...

Backup Slides

- Input Stage Gain

Backup Slides

- Input Stage Impedance

Backup Slides

- Input Stage Reflection Coefficient

Backup Slides

Output Zoom

Output Zoom

Backup Slides

- Theoretical Noise vs Rf

Noise[V/ $\sqrt{\mathrm{Hz}}$]

Backup Slides

- Linearity
- Definition: Charge/Voltage [C/V]
- Simulated Linearity Error dependin on input pulse amplitude

Linearity Error in \%

