

Analog FE ASIC

Upgrade of the front end electronics of the LHCb calorimeter

E. Picatoste, A. Sanuy, D. Gascón

Universitat de Barcelona Institut de Ciències del Cosmos ICC-UB

Calorimeter upgrade meeting – CERN – October 5th 2010

Outlook

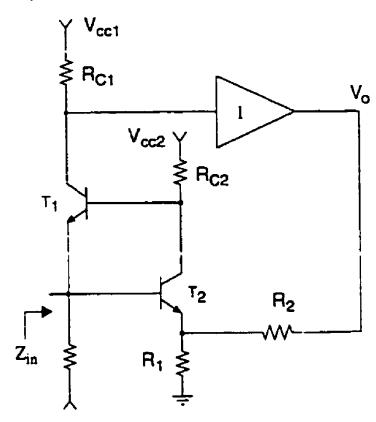
- I. Introduction
- II. Preamplifier
- III. Channel architecture
- IV. Technology issues
- V. Status and plans

I. Introduction: what's new?

- If everybody was at the last meeting
 - This could be the last slide
 - Else
 - We'll go through the talk and come back at the end
- After first prototype submission and last meeting (22th June)
 - Design documentation
 - Test preparation (see Edu's talk)
 - Some thinking on alternatives to clipping
- Informal discussion with M. Newcomer at TWEPP
 - LAPAS chip for ATLAS LAr calorimeter
 - Interested in our design
 - They will include the scheme on a comparative between different CMOS and BiCMOS topologies (Student work)

I. Introduction: requirements

• Requirements as agreed during last year (PM gain 1/5):


	Value	Comments	
Energy range	0-10 GeV/c (ECAL)	1-3 Kphe / GeV	
	Transverse energy	Total energy	
Calibration	4 fC /2.5 MeV / ADC cnt	4 fC input of FE card: assuming 25 Ω	
		clipping at PMT base	
		12 fC / ADC count if no clipping	
Dynamic range	4096-256=3840 cnts :12 bit	Enough? New physic req.? Pedestal	
			See talk about noise in
Noise		< 0.7 NV/√HZ	June's meeting:
Termination	50 ± 5 Ω	Loggino na cotino	ttp://indico.cern.ch/materialDis lay.py?contribId=1&sessionId=
AC coupling	Needed	Low Freq. (pick-up) hoise	&materialId=slides&confId=59 92
Baseline shift	Dynamic pedestal subtraction		
Prevention	(also needed for LF pick-up)	Number of samples needed?	
Max. peak current	4-5 mA over 25 Ω	50 pC in charge	
	1.5 mA at FE input if clipping		
Spill-over	Clipping	Residue level: 2 % ± 1 % ?	
correction			
Spill-over noise	« ADC cnt	Relevant after clipping?	
Linearity	< 1%		
Crosstalk	< 0.5 %		
Timing	Individual (per channel)	PMT dependent	

I. Introduction: active line termination

- Electronically cooled termination required:
 - 50 Ohm noise is too high
 - e. g. ATLAS LAr (discrete component)
- Common gate with double voltage feedback
 - Inner loop to reduce input impedance preserving linearity and with low noise
 - Outer loop to control the input impedance accurately

$$Z_{i} \Box \frac{1/g_{m1}}{G} + R_{C1} \frac{R_{1}}{R_{1} + R_{2}}$$

- Transimpedance gain is given by R_{C1}
- Noise is < 0.5 nV/sqrt(Hz)
 - Small value for R1 and R2
 - Large gm1 and gm2
- · Need ASIC for LHCb
 - 32 ch / board: room and complexity

I. Introduction: LAPAS chip for ATLAS LAr upgrade

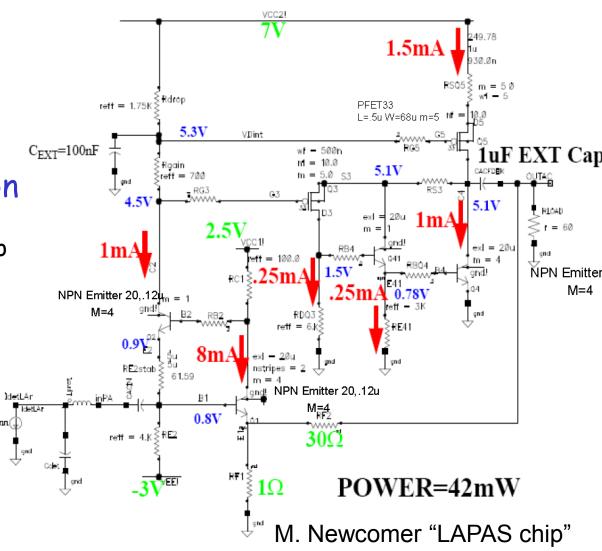
• TWEPP 09

LAPAS: Liquid Argon PreAmplifier Shaper 8WL process ASIC 2100 X 1800um ina_3 inb_4 ing_4 inb_2 outo_1 outb_1 outb_2

LAPAS: A SiGe Front End Prototype for the Upgraded ATLAS LAr Calorimeter

Mitch Newcomer
On Behalf of the ATLAS LAr Calorimeter Group*

Special Acknowledgment of the significant contributions of Emerson Vernon, Sergio Rescia (BNL) and Nandor Dressnandt (Penn) to this work.

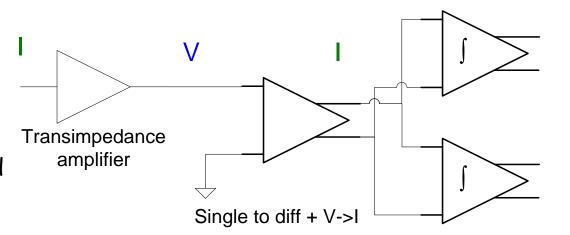

I. Introduction: LAPAS chip for ATLAS LAr upgrade

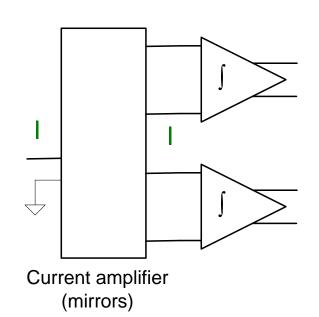
Technology:

- IBM 8WL SiGe BiCMOS
- 130 nm CMOS (CERN's techno)
- More radhard than needed:
 - FEE Rad Tolerance TID~ 300Krad,
 - Neutron Fluence ~10¹³ n/cm²

Circuit is "direct" translation

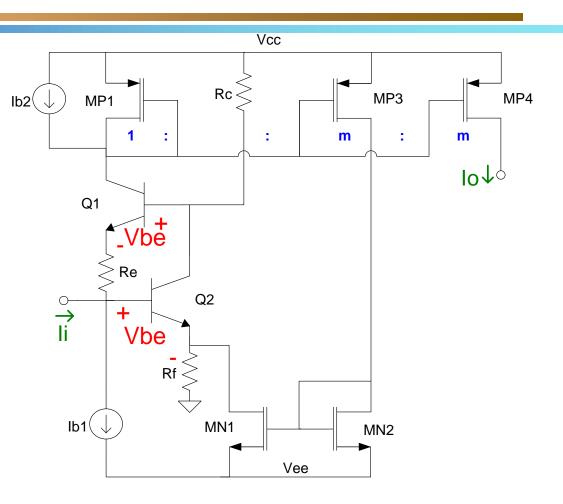
- Need external 1 uF AC coupling capacitor for outer feedback loop
- Three pads per channel required:
 - Input
 - Two for AC coupling capacitor
- Voltage output


I. Introduction: voltage output versus current output


Voltage output:

- Pros:
 - Tested
- Cons:
 - I (PMT) -> V and V -> I (integrate)
 - Larger supply voltage required
 - External components
 - 2 additional pads per channel

- Pros:
 - "Natural" current processing
 - Lower supply voltage
 - All low impedance nodes:
 - Pickup rejection
 - No external components
 - No extra pad
- Cons:
 - Trade-off in current mirrors: linearity vs bandwidth



II. Preamplifier: current output / mixed feedback

Mixed mode feedback:

- Inner loop: lower input impedance
 - Voltage feedback (gain): Q2 and Rc
- Outer loop: control input impedance
 - Current feedback: mirrors and Rf
- Variation of LAr preamplifier
- Current gain: m
- Input impedance

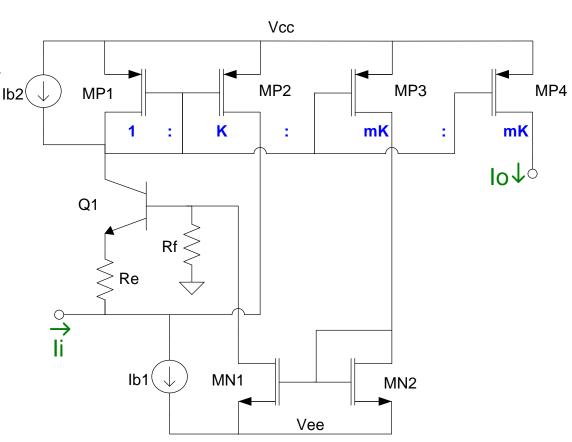
$$Z_i \Box \frac{1/g_{m1} + Re}{g_{m2}Rc} + mR_f$$

· Problem:

- Voltage feedback for the super common base needs 2 Vbe (about 1.5 V!)
- Small room for current mirrors with 3.3 V
 - Need cascode current mirrors
 - 5 V MOS available: but poor HF performance

II. Preamplifier: current output / current feedback

Current mode feedback:


- Inner loop: lower input impedance
 - Current feedback (gain): mirror: K
- Outer loop: control input impedance
 - Current feedback: mirror: m

Current gain: m

Input impedance

$$Z_i \square \frac{1/g_{m1} + Re}{1 + K} + \frac{K}{1 + K} mR_f$$

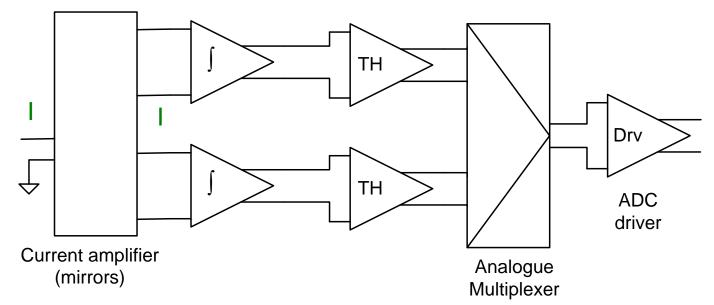
- Current mode feedback used
 - Optical comunications
 - SiPM readout
- Low voltage
 - Only 1 Vbe for the super common base input stage



POWER < 10 mW

- Better in terms of ESD:
 - No input pad connected to any transistor gate or base

II. Preamplifier: pseudo-differential input


- Pseudo-differential input attenuates ground (and CM) noise in FE:
 - Mitigates Vgndi (connducted) noise (attenuation depends on matching)
 - Symmetrical chip/PCB layout also mitigates capacitive coupling (xtalk, pick-up)

- Drawback: uncorrelated HF noise $\times \sqrt{2}$
 - Predictable and stable effect
- Current mode preamplifier makes easier pseudo differential input:
 - Current: 2 pads per channel
 - Voltage (external component): 6 pads per channel

III. Channel architecture

- Current mode amplifier
- Switched integrator
 - Fully differential Op Amp
- Track and hold
 - ADC has already got one, really needed? Clock jitter...
 - 12 bit: flip-around architecture (same Fully Diff OpAmp?)
- Analogue multiplexer
- · ADC driver
 - Depends on ADC input impedance: resistive or capacitive?

IV. Technology issues: choice of technology

SiGe BiCMOS is preferred:

- SiGe HBTs have higher gm/Ibias than MOS: less noise, less Zi variation
- SiGe HBTs have higher ft (>50 GHz): easier to design high GBW amplifiers

Several technologies available:

- IBM
- IHP
- AMS BiCMOS 0.35 um

	IBM	IHP	AMS
HBT ft	> 100 GHz	190 GHz	60 GHz
CMOS	0.13 um	0.13 um	0.35 um
Cost [€ /mm²]	> 3 K	> 3 K	1 K

AMS is preferred

- Factor 2 or 3 cheaper
- Too deep submicron CMOS not required / not wanted:
 - Few channels per chip (4?)
 - Smaller supply voltage
 - Worst matching
- Radiation hardness seems to be high enough (to be checked)

IV. Technology issues: radiation tolerance

• Requirements:

- Dose in 5 years (TID): 10-20 krad/s
- Neutron fluence?

AMS SiGe BiCMOS 0.35 um should be ok:

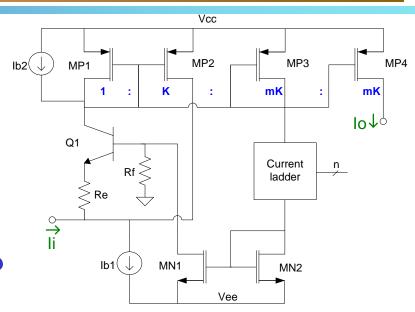
- Omega studies about ILC calorimeters...
- ATLAS: CNM studies: http://cdsweb.cern.ch/record/1214435/files/ATL-LARG-SLIDE-2009-337.pdf

Radiation tolerance should be taken into account at design:

- Cumulative effects:
 - Use feedback (global or local): minimal impact of beta degradation.
 - Not rely on absolute value of components, use ratios but:
 - Effect on current mirrors?
- Transient events:
 - Guard rings for CMOS and substrate contacts: avoid SEL.
 - Majority triple voting: SEU hardened logic (if any).

IV. Technology issues: effect of process variations

- Input impedance is the key point
- Two types of parameter variation simulated
 - Mismatch between closely placed devices (local variation component to component)
 - No problem: 1 % level
 - Process variation (lot to lot):
 - Problem: 10-30 % level !! (uniform distribution)
 - Pessimistic: experience tell that usually production parameters are close to the typical mean values
- In principle process variation affects whole production (1 run)
 - Could be compensated with an external resistor in series / parallel with the input
- Variation wafer-to-wafer or among distant chips in the same wafer:
 - Can not be simulated
 - Higher than mismatch and lower than process variation
 - According to previous experience: 2-3 % sigma: BUT NO WARRANTY
- Should we foresee a way to compensate it?
 - Group (2-3) chips and:
 - Different pcb (2 3 different external resistor values
 - Tune a circuit parameter
 - Automatic tunning

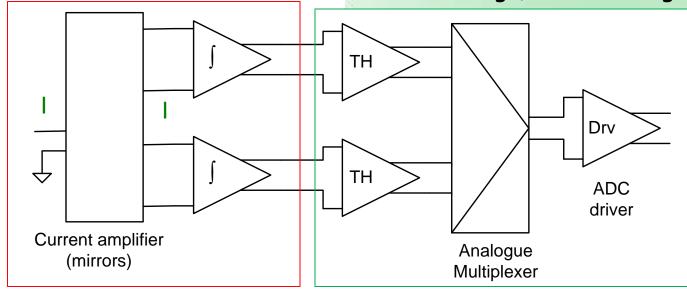

IV. Technology issues: effect of process variations

Input impedance controllable by:

- Tune feedback resistor Rf
 - Difficult: small value (Ron of the switch)
- Tune second feedback current
 - Binary weighted ladder (3 bits?): simple

How control current ladder control?

- Group ASICs a fix the value, set by:
 - External jumper
 - Slow control: dig interface required
- Automatic tunning
 - Reference voltage
 - Reference currents: external or band gap
 - External resistor
 - Wilkinson or SAR ADC style logic



V. Status and plans

- Prototyped in June AMS run:
 - Low noise current amplifier:
 - Basic schemes
 - Integrator:
 - High GBW fully differential OpAmp
 - Could be used in other stages

See Edu's talk

- To be tested in future runs:
 - Compensation of process variation of amplifier's input impedance
 - Track and hold (if needed)
 - Analogue multiplexer
 - ADC driver
 - ADC needs to be characterized
 - Common blocks:
 - Clock generation
 - Biasing (CMOS band gap already exists)

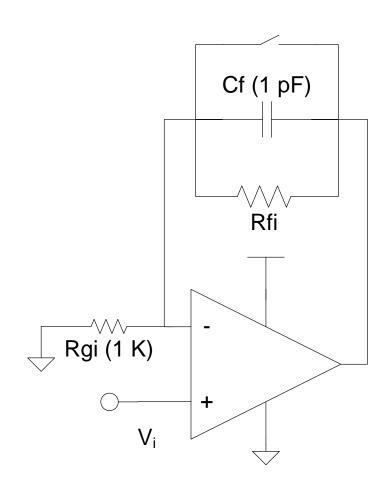
V. Status and plans: concluding remarks

A current mode amplifier with cool termination seems feasible:

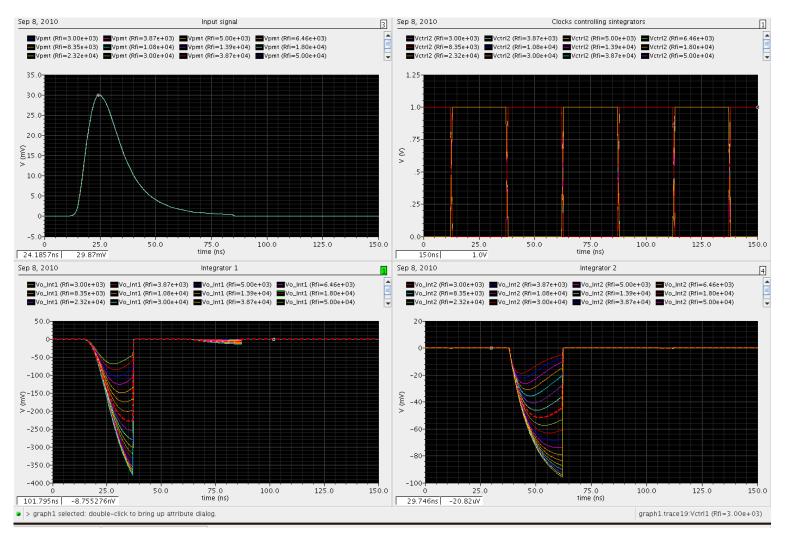
- Current feedback preferred
- Current mirrors with active cascode topologies
 - Linearity better than 0.5 % for 2 mA peak input current
 - BW > 300 MHz

Noise seems ok:

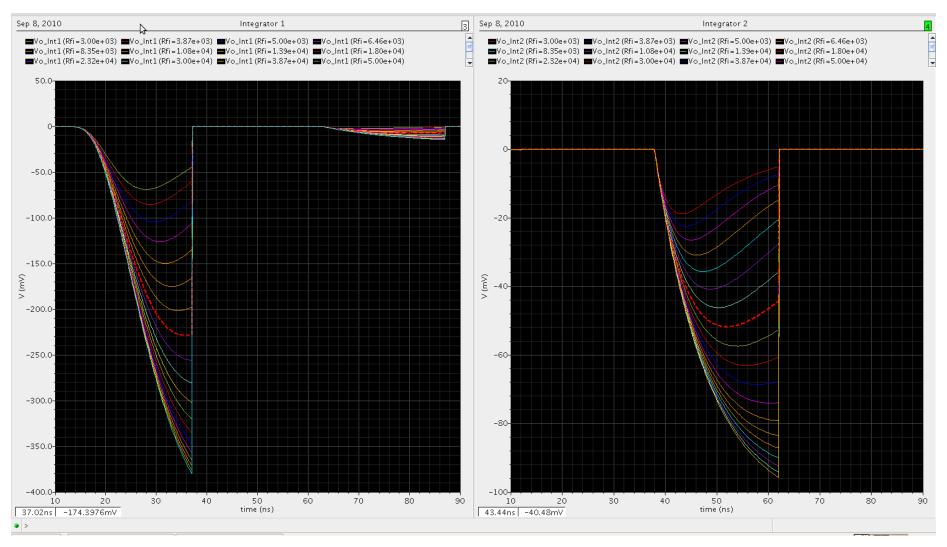
- Gain such that 50 pC @ PMT \Rightarrow 2 V @ Integrator Output
- Single ended preamp and no pedestal subtraction: 250 uV rms
- Differential preamp and no pedestal subtraction: 330 uV rms
- Differential preamp and dynamic pedestal subtraction: 500 uV rms (1 ADC count)


Simulation results in Edu's talk

V. Status and plans: concluding remarks


- It looks ok, however it is just calculation and simulation for the moment
 - Matching may affect linearity
 - Simulated, but at the end it depends on layout
 - A dramatic effect is not expected...
- To keep in mind...
 - Integrated solution gives some security margin
 - Still possible to modify PM base
 - How to do clipping? Gaussian shaping? Digital spill over correction (as in PS)?
 - As differential as possible for a single ended sensor
- · Cost...
 - If an engineering run can be shared with other projects
 - Cost of < 15€/ch for the analog seems feasible (without ADC)

BACK-UP


- Possible alternative to delay line clipping or gaussian shaping
 - Jacques' idea

• Possible alternative to delay line clipping or gaussian shaping

· Possible alternative to delay line clipping or gaussian shaping

