HIGGS MASS MEASUREMENT WITH Z RECOIL ANALYSIS

Nicolas Morange, Olivier Salin July 19, 2021

CONTEXT

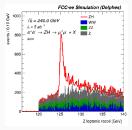
Hi, there !

- ATLAS physicist
 - Expertise in Higgs physics (VH, $H \rightarrow b\bar{b}$; combination)
 - Expertise in statistical analyses
- FCC Noble Liquid Calorimetry project
 - Main FCC involvement
 - Project with CERN (Martin Aleksa), Prague, Edinburgh
 - Work on electrodes and readout electronics

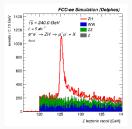
FCC Physics

- 6-weeks internship of Olivier Salin
- Good excuse to do a bit of FCC physics analysis
- Picked Higgs mass measurement from recoil as an easy topic for a young student, and with already existing software base

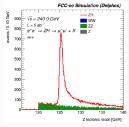
- No prior experience with FCC software at all
- Followed the tutorials and asked questions
 - Overall very pleasant journey
 - Managed to run on a machine with cvmfs access at IJCLab
 - Copied MC samples locally
 - Managed to run new MC samples (Pythia+DELPHES) easily (Z γ^*)
- Selections and plots using the FCCAnalyses
 - Using mHrecoil-mumu code
 - And updating to status of Ang's studies as of end of May
 - Made contribution to FCC software (!) by improving runDataFrameFinal to make use of full
 power of RDataFrame
- mrecoil fits using Ang's fitting code


Huge thanks to Clément !

- Started from Ang's preselection
- Tried several kinematic variables, some of them found in ILC theses on the subject (H. Li, M. Ruan)
- Included Z/γ* background (private sample, as official one was not yet available)
- Signal/backgrounds always evaluated in mrecoil window around 125 GeV
- Tried several types of selections


Basic selection	$\begin{array}{l} M_{rec} \in [120.140] \ \mathrm{GeV} \\ M_z \in [86.96] \ \mathrm{GeV} \\ p_T^{-} > 20 \ \mathrm{GeV} \end{array}$				
Kinematic selection Aim : use only Z decay in selection	$\begin{array}{l} \text{Basic selection} \\ \mid p_{2}^{Z} \mid < 40 \; \text{GeV} \\ \theta \in [0.5, 2.5] \; \text{rad} \\ \cos(aco) \in [-0.9, -0.48] \\ \mid \Delta \phi \mid < 2.7 \; \text{rad} \end{array}$				
Leading photon selection	Basic selection $p_T^{\gamma} < 20 \; { m GeV}$				
Missing energy selection	Basic selection $p_T^{\gamma} < 20 \text{ GeV}$ $ \text{Missing}_p_x < 10 \text{ GeV}$ $\text{Missing}_p_T < 20 \text{ GeV}$				

ZH	ZZ	ww	Zγ	Signal/Bruit	Significance
				rapport	S/√(S+B)
0.201037	1,35899	16,4385	4,6		
1005185	6794950	82192500	23000000		
30084	434051	1044740	18295492	0%	7
18484	19612	16512	39288	25%	60
11815	9896	9674	18696	31%	53
17350	17265	15879	2139	49%	76
12133	4168	8,2	719	248%	93
	0.201037 1005185 30084 18484 11815 17350	0.201037 1,35899 1005185 6794950 30084 434051 18484 19612 11815 9896 17350 17265	0.201037 1,35899 16,4385 1005185 6794950 82192500 30084 434051 1044740 18484 19612 16512 11815 9896 9674 17350 17265 15879	0.201037 1,35899 16,4385 4,6 1005185 6794950 82192500 2300000 30084 434051 1044740 18295492 18484 19612 16512 39288 11815 9896 9674 18696 17350 17265 15879 2139	0.201037 1,35899 16,4385 4,6 rapport 1005185 6794950 82192500 2300000 30084 434051 1044740 18295492 0% 18484 19612 16512 39288 25% 11815 9896 9674 18696 31% 17350 17265 15879 2139 49%


- Cutflows are as expected:
 - Photon selection kills Z with ISR
 - MET/Mpz selections kill bkgs with neutrinos (and ISR in beam pipe)

Z-only selection

Selection on photons

Selection with MET/MPz

Désintégration	Prédiction	Sel Basique	Sel Cinematique	Sel Photon	Sel Energie manquante
cc	2,9%	2,90%	3,01%	2,78%	3,48%
bb	58,20%	57,04%	59,91%	57,89%	66,24%
μμ	0,02%	0,02%	0,00%	0,02%	0,02%
ττ	6,30%	6,56%	5,24%	5,69%	1,49%
gg	8,20%	8,23%	8,38%	8,40%	11,36%
YY	0,23%	0,22%	0,00%	0,00%	0,00%
Zγ	0,15%	0,24%	0,06%	0,07%	0,07%
ZZ	2,60%	3,75%	3,53%	3,76%	2,99%
WW	21,40%	21,06%	19,88%	21,38%	14,36%

- Selections using event info beyond Z kinematics bias Higgs decays
- Best S/B may not be suitable for inclusive ZH cross-section measurement
 - As it requires same efficiency for all decay modes

	Sel Basique	Sel Cinematique	Sel Photon	Sel Energie manquante
estimateur de masse (GeV)	125,303	125,307	125,296	125,314
incertitude (MeV)	6,6	10,1	6,2	4,9
S/B	25%	31%	49%	248%
Signal ZH	18484	11815	17350	12133

- Best mass resolution obtained from combination of high S/B and large signal statistics
 - MET/MPz selection works remarkably well
- Issues with fitting code found along the way
 - Too many parameters: fit with all parameters free tends to be unstable
 - Also quite large (anti-)correlations between params
 - Performed Toy study to estimate the precision of the mass measurement over 1000 toys (RMS
 of gaussian fit to the postfit values of the mass parameter), but results also unstable there.

Cutflow with the same cu	t	30084 in the µ	$\iota^+\mu^-$ channel			
Z->e+e- , Lumi = 5 /ab , simulated:10^7	ZH	ZZ	WW	Ζμ+μ-	Signal/Bkg	Significance
					rapport	S/sqrt(S+B)
Cross section (pb)	0.201037	1,35899	16,4385	4,6		
Total number of events	1005185	6794950	82192500	23000000		
Number of e+e-	23915	344811	827193	13169358	0%	6
Basic selection	14629	15832	14005	33189	23%	52
Kinematic selection	9413	8134	7841	15584	30%	47
Leading photon selection	13718	13844	13471	2168	47%	66
Missing energy	9503	3306	8	634	241%	82

Attempted same analysis in electron channel

- Consciously leaving aside the missing backgrounds specific to this channel
- Much lower signal yield found
 - Traced back to a too tight isolation in DELPHES card
 - Checked by reproducing few signal samples with varying isolation cone and isolation cut
- Too good electron resolution
 - i.e resolution as good as pions/muons
 - No Bremstrahlung effect in DELPHES as far as I understand
 - Smeared manually electrons to $1\% + 3|7|10|15\%/\sqrt{(E)}$
 - Unfortunately end results not very reliable because of fit instabilities (still all in 5-20 MeV range)

- Very pleasant journey through FCC analysis
- Some interesting findings along the way
 - Physics lessons
 - Limitations of current fastsim
- I now know I can easily perform physics benchmarks when we reach a reasonable fullsim description of the LAr calo
 - Provided there is adequate description of electrons by a combined tracking/calo code