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Logs and Scales: SCET |

SCET I simply matches scale dependence in all sectors:
A2 A
—-Log (—Q) + 2Log (—Q) = Log (9)
H H H
2Yy+ Yus = —YH

hard l Q
""""""TT"/J
e @

QN usoft

Figure: Scales for SCET | process



Logs and Scales: SCET Il
SCET II must have different story:
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Figure: Scales for SCET Il process



(Not Quite) Back to Back jets In SCET

eTe™ — 2j with the event shape Jet Broadening.
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Figure: Jet Broadening Displacement From Thrust Axis

(Rakow,Webber, 1981; Catani, Turnock, Webber 1992; Dokshitzer,
Lucenti, et al, 1998)



(Not Quite) Back to Back jets In SCET

v

e=7y % jet broadening event shape.
Thrust axis t of the event defines directions:

n=1,-t) prt=0
p = (n.p,n.p,pr)
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n= (1,1
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Demand e < 1 for dijets.

v

Relevant on-shell modes must have g; ~ QA.
Softs Q(4, 4, 1) and collinears Q(1, 42, 1) or Q(42,1,2)
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Factorization Theorem
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Where the jet and soft functions are defined as:
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Where B, and By, are operators picking out the transverse
momenta being contributed to each hemisphere.



Blindly Calculate

» Bare jet function:

Jn(en, O) -

2 1+(1-2)2 z)?
n \Q2%e?
n.l .
z= rel I momentum of gluon crossing cut

» Integral ill-defined at z = 0, the soft region.
» Divergence multiplies non-zero e, terms that virtuals cannot
cancel.

The resolution of these divergences also solves problem of scales
in SCETII



Lesson #1 of QFT Divergences: Proceed without fear!

We could...

» Choose favorite regulator for Wilson lines.
» Calculate all sectors.
» Sum and/or subtract.

...and (presummably) get a fine fixed order result.



n Regulator

» Problem: All order structure?
» Solution:

» Multiplicatively Renormalize
» Regulator with dim reg like features.

» For non-singular gauges, we redefine wilson lines:

Wi(x) = [ D exp (—gr_:—r3 [vﬂm-ﬁr"ﬁ-An,q(x)])]
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n Regulator
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Figure: Feynman Rule for Regulated Collinear Wilson Line

v

Regulates the energy of each gluon coming off Wilson Line.

v

Does not hide soft functions.

v

Preserves Exponentiation Theorems.

v

Sets zero-bins in collinear sectors to zero automatically.

v

Preserves modes and their power counting.

v

Dim-reg. style evolution equations.



n Regulator Comparison

» Analytic regulator:

» Hides soft contributions
» Does not exponentiation

» A regulator (Chui, Fuhrer, et al. 2009):
» Introduces more scales into integrals

» Exponentiates after zero bins
» No known evolutions equation.
» Off the light cone (Collins, Soper 1981):
» Introduces more scales into integrals
» Proof of exponentiation straightforward
» Introduces gauge modes that are not appropiate by strict
power counting.
» Understood evolution equation.



Jet Function Redux: v Logs

Now with r regulator in place, we look at the laplace transformed

jet function:
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Structure of n divergences
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Figure: Factorization of  Divergences

» Combining jet and soft sectors, n divergences and v
dependence cancels.
» Within a sector n divergences exponentiate.
» For jet functions, utilize factorization of soft limit.
» Then invoke exponentiation theorems for eikonal processes.
» Treat removal of n divergences with multiplicative
renormalization.



y Renormalization

Given exponentiation of n divergences, there are renormalization
factors Z,, Z5, Zs such
JB(7,b1) B (1, b2) S8 (1, by, bp) =
(Z0(v, 1) J5 (7, b1, v, 1)) (Za(v, 1) J2 (7, b2, v, 1))
(Zs(V,#)SR(T, b1, ba, v,,u))

Where
Zo(v, 1) Za(v, 1) Zs(v, ) = ZI?I1 (1)



v RG

One can calculate the RG equations as:

d vV
v FR(v i) = yEF" (v )

d r R
u@F (o) = YeF" (vp)

For the case of the jet function at NLO:
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NB: Running in v and u commute.



The Strategy of Running

» u Run hard function down to scale eQ
» v Run soft function up to scale Q
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Figure: Running Strategy



Preliminary Results at NLL
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Figure: Jet Broadening Differential Cross-Section



Conclusion

As known since long ago (Collins, Soper 1981), observing
transverse momentum dependent quantities gives...

» Uncanceled divergences in each sector.
» Important soft contributions.
» New logs to resum dependent on cusp angle (the high scale).

n regulator provides controllable form to divergences, and a way to
resum.



n Regulator in Different Sectors
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Figure: Mass-Shell Hyperbola in SCET I



