## Subtractions for SCET

in collaboration with:
C. Bauer, N. D. Dunn
arXiv:1102.4899
arXiv:1103.????

Andrew Hornig<br>U. Washington<br>Particle, Field, and String Theory Group<br>SCET Workshop<br>March 6, 2011

## Why subtractions?

- future in SCET: jet algorithms
- jet functions and soft functions with algs are hard
- only handful of (relatively simple!) examples:
- N -jets in e+e- with the shape of N measured
- N -jet threshold with $\mathrm{N}>0$ (or 1)
- now, N-jettiness (see Teppo’s talk)
- alg dependence on measured jets fncs power suppressed
focus on soft functions


## Original Subtractions

- Add \& subtract to get finite Real and Virtual:

$$
\sigma^{N L O}=\int_{m+1}\left[\left(d \sigma^{R}\right)_{\epsilon=0}-\left(d \sigma^{A}\right)_{\epsilon=0}\right]+\int_{m}\left[d \sigma^{V}+\int_{1} d \sigma^{A}\right]_{\epsilon=0}
$$

- subtractions are universal and analytically calculable, same singularities as Virtual and Real (point-by-point!)
- difference here Soft/Jet Functions: depend on observable/ algorithm
- however, will see that all obs/algs belong in one of 2 universality classes


## Outline

- UV study: all alg/obs combos 2 types of subtractions
- Angularities as basis for all UV limits for $\varphi$-symm obs
- Examples:
- cross-check theta'-phi from theta-phi jets
- jet shapes for eta-phi jets @ pp
- 1-jettiness
- others...
- Compare/contrast with related work (see Teppo's talk on Tues)


## Soft Functions: <br> $$
\mathcal{S}^{(1)}\left(\mathcal{A}, \mathcal{M} ;\left\{\sigma_{m}\right\}\right)=\sum_{\langle i, j\rangle} \int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} N_{i j}(k) \sum_{k=0}^{N} \Theta_{\mathcal{A}}^{k} \Delta_{\mathcal{M}}^{k}
$$

- integrand:

$$
N_{i j}=-g^{2} \mu^{2 \epsilon} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \frac{n_{i} \cdot n_{j}}{n_{i} \cdot k n_{j} \cdot k} 2 \pi \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

- measurement:

$$
\Delta_{\mathcal{M}}^{k}(k)=\delta\left(\sigma_{k}-\sigma_{k}(k)\right) \prod_{l \neq k} \delta\left(\sigma_{l}\right)
$$

- algorithm: $\Theta_{\mathcal{A}}^{k}$
- e.g., $\quad \Theta_{\text {cone }}^{k}(k)=\theta\left(\frac{n_{k} \cdot k}{\bar{n}_{k} \cdot k}<\tan ^{2} \frac{R}{2}\right)$

$$
\Theta_{\text {cone }}^{0}(k)=\left(1-\sum_{k=1}^{N} \Theta_{\text {cone }}^{k}(k)\right) \theta\left(k^{0}<\Lambda\right)
$$

## Divergences in Soft Functions

$$
N_{i j}=-g^{2} \mu^{2 \epsilon} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \frac{n_{i} \cdot n_{j}}{n_{i} \cdot k n_{j} \cdot k} 2 \pi \delta\left(k^{2}\right) \theta\left(k^{0}\right)
$$

- IR:

$$
k^{0} \rightarrow 0
$$

$$
1 / \epsilon^{2}
$$

- Collinear: $n_{i} \cdot k \rightarrow 0$
- UV:

$$
\left.k^{0} \rightarrow \infty \quad\right\} 1 / \epsilon^{2}
$$

## Divergences in Differences of Soft Functions

- take moments for easier comparison:

$$
\left\langle\sigma_{k}^{n}\right\rangle=\prod_{l} \int_{0}^{1} \mathrm{~d} \sigma_{l} \sigma_{k}^{n} \mathcal{S}^{(1)}\left(\mathcal{A}, \mathcal{M} ;\left\{\sigma_{m}\right\}\right) \equiv \int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} I_{k}^{n}(k)
$$

- IR \& Coll. trivial due to IR safety:
- $\mathrm{n}>0: \quad \lim _{k^{0} \rightarrow 0} \sigma_{i}(k)=0 \quad \lim _{k^{0} \rightarrow 0}\left(I_{k}^{n}(k)-\tilde{I}_{k}^{n}(k)\right)=0$

$$
\lim _{n_{i} k \rightarrow 0} \sigma_{i}(k)=0 \quad \lim _{n_{i} k \rightarrow 0}\left(I_{k}^{n}(k)-\tilde{I}_{k}^{n}(k)\right)=0
$$

- $\mathrm{n}=0: \quad \lim _{k^{0} \rightarrow 0}\left(I^{0}(k)-\tilde{I}^{0}(k)\right) \propto \sum_{k=0}^{N}\left[\Theta_{\mathcal{A}}^{k}(k)-\Theta_{\tilde{\mathcal{A}}}^{p}(k)\right]=0$

$$
\lim _{n_{i}: k \rightarrow 0}\left(I^{0}(k)-\tilde{I}^{0}(k)\right) \propto \sum_{k=0}^{N}\left[\Theta_{\mathfrak{A}}^{k}(k)-\Theta_{\tilde{\mathcal{A}}}^{k}(k)\right]=0
$$

## Divergences in Differences of Soft Functions

- take moments for easier comparison:

$$
\left\langle\sigma_{k}^{n}\right\rangle=\prod_{l} \int_{0}^{1} \mathrm{~d} \sigma_{l} \sigma_{k}^{n} \mathcal{S}^{(1)}\left(\mathcal{A}, \mathcal{M} ;\left\{\sigma_{m}\right\}\right) \equiv \int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} I_{k}^{n}(k)
$$

- UV safety:
- $\mathrm{n}>0$ :

$$
\lim _{k \rightarrow \infty}\left(I^{0}(k)-\tilde{I}^{0}(k)\right) \propto \sum_{k \in \text { meas }}\left[\Theta_{\mathcal{A}}^{k}(k) \theta\left(\sigma_{k}(k)<1\right)-\Theta_{\mathcal{A}}^{k}(k) \theta\left(\widetilde{\sigma}_{k}(k)<1\right)\right]+\sum_{k \notin \operatorname{meas}}\left[\Theta_{\mathcal{A}}^{k}(k)-\Theta_{\hat{A}}^{k}(k)\right]
$$

what matters depends on
only alg. matters

- $\mathrm{n}=0$ :

$$
\lim _{k 0 \rightarrow \infty}\left(I_{k}^{n}(k)-\tilde{I}_{k}^{n}(k)\right) \propto \sigma_{k}^{n}(k) \Theta_{\mathcal{A}}^{\prime}(k) \theta\left(\sigma_{k}(k)<1\right)-\widetilde{\sigma}_{k}^{n}(k) \Theta_{\tilde{\mathcal{A}}}^{k}(k) \theta\left(\widetilde{\sigma}_{k}(k)<1\right)
$$

$\Rightarrow 2$ types of soft functions

## Type I vs. Type II

- Type I: $\lim _{k^{0} \rightarrow \infty} \Theta_{\mathcal{A}}^{l}(k) \theta\left(\sigma_{l}(k)<1\right)=\lim _{k^{0} \rightarrow \infty} \theta\left(\sigma_{l}(k)<1\right) \quad$ (obs. "wins")
- incl. kt/cone with any angularity $\mathrm{a}<2$ (or obs. with same UV)
- excl. kt with $1<a<2$
- N -jettiness
- N-jet threshold at e+e- and pp colliders
- Type II: $\lim _{k^{0} \rightarrow \infty} \Theta_{\mathcal{A}}^{l}(k) \theta\left(\sigma_{l}(k)<1\right)=\lim _{k^{0} \rightarrow \infty} \Theta_{\mathcal{A}}^{l}(k) \quad$ (alg. "wins")
- "unmeas." jets (no shape is probed)
- excl. kt with $\mathrm{a}<1$


## Angularities as Basis of Obs. in UV

- def'n (Q arbitrary normalization):

$$
\tau_{a}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}=\frac{1}{Q} \sum_{i}\left|\mathbf{p}_{i}^{T}\right| e^{-\left|\eta_{i}\right|(1-a)}
$$

- for fixed T , as $\mathrm{E} \rightarrow \infty$ (so $\theta \rightarrow 0$ ):

$$
\tau_{a} \rightarrow E_{i} \theta^{2-a}
$$

- this is the most general, IR safe (for $a<2$ ) result in $\theta \rightarrow 0$ limit
- results exist for jet shapes for all $\mathrm{a}<1$ (will use as "subtractions")... Ellis, Hornig, Lee, Walsh, Vermilion


## Demonstration of Type I vs. II in $\mathrm{k}^{+}{ }^{-}-$-plane



- Note: any measurement $(w / a<1)$ does not change divergences of Type II


## Final Result

$$
\begin{aligned}
\mathcal{S}^{(1)}\left(\mathcal{A}, \mathcal{M} ;\left\{\sigma_{m}\right\}\right)=\widetilde{\mathcal{S}}^{(1)}\left(\widetilde{\mathcal{A}}, \widetilde{\mathcal{M}} ;\left\{\widetilde{\sigma}_{m} \rightarrow \sigma_{m}\right\}\right)+ & +\mathcal{D}^{0} \prod_{i} \delta\left(\sigma_{i}\right)+\sum_{i} \mathcal{D}_{i}^{1} \prod_{j \neq i} \delta\left(\sigma_{j}\right)\left(\frac{1}{\sigma_{i}}\right)_{+} \\
\mathcal{D}^{0}=\left\langle\sigma^{0}\right\rangle-\left\langle\tilde{\sigma}^{0}\right\rangle & \mathcal{D}_{k}^{n}=\left\langle\sigma_{k}^{n}\right\rangle-\left\langle\widetilde{\sigma}_{k}^{n}\right\rangle \\
\left(0^{\text {th }}\right. & \text { moment w.r.t. all obs) } \\
\text { (nth } & \text { moment w.r.t. } \left.\mathrm{k}^{\text {th }} \text { obs }\right)
\end{aligned}
$$

- we use jet shape calc. as subtraction (variation needed for threshold)
- moments only involve $\int \mathrm{d} \Omega$ :

$$
\begin{aligned}
& \mathcal{D}^{0}=-\frac{\alpha_{s}}{\pi} \sum_{\langle i, j\rangle} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \int \frac{\mathrm{~d} \Omega}{4 \pi} \frac{n_{i} \cdot n_{j}}{\left(1-\hat{k} \cdot \hat{n}_{i}\right)\left(1-\hat{k} \cdot \hat{n}_{j}\right)} \\
& \times[\sum_{k=1}^{\sum_{\text {diff. from alg. }}^{\left(\Theta_{\mathcal{A}}^{k}-\Theta_{\tilde{\mathcal{A}}}^{k}\right) \log } \frac{\tilde{k}_{\max }^{k}(\Omega)}{\Lambda}+\underbrace{\left(1-\sum_{k=1}^{N} \Theta_{\mathcal{A}}^{k}\right) \log \frac{E_{\text {cut }}(\Omega)}{\Lambda}}_{\text {diff. from veto }}+\underbrace{\sum_{k=1}^{N} \Theta_{\mathcal{A}}^{k} \log \frac{k_{\max }^{k}(\Omega)}{\tilde{k}_{\max }^{k}(\Omega)}}_{\text {diff. from obs. }}]} \\
& \quad k_{\max }^{k}(\Omega)=k^{0} / \sigma_{k}(k) \quad E_{\text {cut }}(\Omega)=\left\{\begin{array}{c}
E_{\text {cut }} \\
p_{\text {cut }}^{T} / \sin \theta \\
\vdots
\end{array}\right.
\end{aligned}
$$

## $\theta \varphi$ jets of $R=R_{t}$ from $R=R_{s}$ jets (cross-check)

- Changing subtraction $R_{s}$ in mercedes benz (target $R_{t}$ fixed):



## jet shapes of $\eta \varphi$ jets ( $\left.w / p T_{\text {cut }} \& \eta_{\text {cut }}\right)$

- one jet w/ angularity measured, two beams with $|\eta|>\eta_{\text {cut }}$ cut-out
- needs Type I for meas. jet, Type II for beams

Target:


Subtraction:


## jet shapes of $\eta \varphi$ jets ( $w / p T_{\text {cut }} \& \eta_{\text {cut }}$ )

- note: could also do IF we had $\mathrm{a}=1$ (no logs of $\eta_{\text {cut }}$ )

Target:


Subtraction:

$$
E<\Lambda
$$

- question: ok that $a=1$ weights near beam more than $a=0\left(\theta^{1}\right.$ vs $\left.\theta^{2}\right)$


## jet shapes of $\eta \varphi$ jets ( $w / \mathrm{p} \mathrm{T}_{\text {cut }} \& \eta_{\text {cut }}$ )

- one jet w/ angularity measured, two beams with $|\eta|>\eta_{\text {cut }}$ cut-out
- needs Type I for meas. jet, Type II for beams
- beam-beam color-connection contribution as a function of $\mathrm{R}_{\mathrm{jet}}$ :



## 1-Jettiness from $\theta \varphi$ jets w/ $E_{\text {cut }}$

- 1-jettiness has measurement everywhere:

Target:


Subtraction:


## 1-Jettiness from $\theta \varphi$ jets w/ $E_{\text {cut }}$

- 1,2 = beams; 3 = jet



## More examples

- jet shapes that only asymptote to an angularity
- N -jet threshold at pp (subtraction $=\mathrm{N}$-jet threshold at e+e-)
- $p T_{\text {cut }}$ everywhere (no large logs of $\eta_{\text {cut }}$ )
- azimuthally asymmetric observables (e.g., planarity)

Comparison to the "Hemisphere Decomposition" (MIT) (see Teppo's talk)

$$
F\left(\left\{k_{i}\right\}, p\right)=F_{i j, \text { hemi }}\left(\left\{k_{i}\right\}, p\right)+F_{j i, \text { hemi }}\left(\left\{k_{i}\right\}, p\right)+\sum_{m \neq i} F_{i j, m}\left(\left\{k_{i}\right\}, p\right)+\sum_{m \neq j} F_{j i, m}\left(\left\{k_{i}\right\}, p\right)
$$

Analytical, Divergent:

$$
F_{i j, \text { hemi }}\left(\left\{k_{i}\right\}, p\right)=\theta\left(p^{j}-p^{i}\right) \delta\left[k_{i}-f_{i}(p)\right] \prod_{l \neq i} \delta\left(k_{l}\right)
$$

Numerical, Finite:

$$
F_{i j, m}\left(\left\{k_{i}\right\}, p\right)=\theta\left(p^{j}-p^{i}\right) \Theta_{m}(p) \prod_{l \neq i, m} \delta\left(k_{l}\right)\left\{\delta\left(k_{i}\right) \delta\left[k_{m}-f_{m}(p)\right]-\delta\left[k_{i}-f_{i}(p)\right] \delta\left(k_{m}\right)\right\}
$$

- $F_{i j, \text { hemi }}$ easier than $S_{i j}^{\text {meas }}\left(\tau^{k}\right)$, but not known for a $!=0$
- Scope: only works for Type I (UPDATE: maybe Type II ??)


## Comparison to the "Hemisphere Decomposition" (MIT) (see Teppo's talk)

- Numerics: unbounded y integral
$\Rightarrow$ analytical evaluation needed (just for N -jettiness)
$I_{0}\left(\alpha, \beta,\left\{\alpha_{l}, \beta_{l}, \phi_{l}\right\}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} \mathrm{d} \phi \int \frac{\mathrm{d} y}{y} \theta(y-\sqrt{\beta / \alpha}) \theta\left(1 / \alpha-1-y^{2}+2 y \cos \phi\right)$


Unbounded dy/y
Quadratic Eq. in y:

$$
y_{ \pm}\left(\phi, \alpha_{l}, \beta_{l}, \phi_{l}\right)=\frac{1}{1-\beta_{l}}\left\{\cos \phi-\sqrt{\alpha_{l} \beta_{l}} \cos \left(\phi+\phi_{l}\right) \pm \sqrt{\left[\cos \phi-\sqrt{\alpha_{l} \beta_{l}} \cos \left(\phi+\phi_{l}\right)\right]^{2}-\left(1-\alpha_{l}\right)\left(1-\beta_{l}\right)}\right\}
$$

$\begin{array}{ll}\text { 1. } \beta_{l}<1: & \\ \begin{array}{ll}\text { (a) } \alpha_{l} \geq 1: & y \leq y_{+}\left(\phi, \alpha_{l}, \beta_{l}, \phi_{l}\right) \\ \text { (b) } \alpha_{l}<1: & y_{-}\left(\phi, \alpha_{l}, \beta_{l}, \phi_{l}\right) \leq y \leq y_{+}\left(\phi, \alpha_{l}, \beta_{l}, \phi_{l}\right) \\ & \cos \phi-\sqrt{\alpha_{l} \beta_{l}} \cos \left(\phi+\phi_{l}\right) \geq \sqrt{\left(1-\alpha_{l}\right)\left(1-\beta_{l}\right)}\end{array}\end{array}$
就


## Conclusions

- subtractions can easily be used to get LHC-ready soft functions
- ingredients for all azimuthally symmetric obs (a<1) with Type I algorithms
- need for future:
- $a>=1$
- $S_{i j}\left(\tau^{k}\right), S_{i j}^{k}$ for azimuthally-asymmetric classes
- 2-loop anom dims of jet/soft fncs for a != 0 for NNLL
- understanding resummation for Type II

