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Why subtractions?

• future in SCET: jet algorithms

• jet functions and soft functions with algs are hard

• only handful of (relatively simple!) examples:

• N-jets in e+e- with the shape of N measured

• N-jet threshold with N > 0 (or 1)

• now, N-jettiness (see Teppo’s talk)

• alg dependence on measured jets fncs power suppressed

focus on soft functions

Ellis, Hornig, Lee, Walsh, Vermilion

Bauer, Dunn, Hornig

Tackmann, Stewart, Waalewijn, Jouttenus
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Original Subtractions

• Add & subtract to get finite Real and Virtual:

• subtractions are universal and analytically calculable, same 
singularities as Virtual and Real (point-by-point!)

• difference here Soft/Jet Functions: depend on observable/
algorithm

• however, will see that all obs/algs belong in one of 2 universality 
classes

one can safely perform the limit ε → 0 under the integral sign in the first term on the
right-hand side of Eq. (2.5). Hence, this first term can be integrated numerically in four
dimensions.

All the singularities are now associated to the last two terms on the right-hand side
of Eq. (2.5). If one is able to carry out analytically the integration of dσA over the one-
parton subspace leading to the ε poles, one can combine these poles with those in dσV , thus
cancelling all the divergences, performing the limit ε → 0 and carrying out numerically the
remaining integration over the m-parton phase space. The final structure of the calculation
is as follows

σNLO =
∫

m+1

[(
dσR

)

ε=0
−

(
dσA

)

ε=0

]
+

∫

m

[
dσV +

∫

1
dσA

]

ε=0
, (2.6)

and can be easily implemented in a ‘partonic Monte Carlo’ program, which generates
appropriately weighted partonic events with m + 1 final-state partons and events with m
partons.

Note that the subtracted term [ dσR−dσA ] in Eq. (2.6) is integrable in four dimensions
by definition. The fact that all the divergences cancel in the second term on the right-
hand side of Eq. (2.6) is instead not a general feature of all hadronic cross section¶. The
cancellation of divergences is guaranteed only for the hadronic observables that we are
considering in this paper, namely jet observables.

These quantities have to be experimentally (theoretically) defined in such a way that
their actual value is independent of the number of soft and collinear hadrons (partons)
produced in the final state. In particular, this value has to be the same in a given m-parton
configuration and in all m+1-parton configurations that are kinematically degenerate with
it (i.e. that are obtained from the m-parton configuration by adding a soft parton or
replacing a parton with a pair of collinear partons carrying the same total momentum).

This property can be simply restated in a formal way. If the function F (n)
J gives the value

of a certain jet observable in terms of the momenta of the n final-state partons, we should
have

F (m+1)
J → F (m)

J , (2.7)

in any case where the m + 1-parton and the m-parton configurations are kinematically
degenerate.

The Born-level cross section dσB can be (symbolically) written as a function of the

jet-defining function F (m)
J in the following way

dσB = dΦ(m) |Mm|
2 F (m)

J , (2.8)

where dΦ(m) and Mm respectively are the full phase space and the QCD matrix element
to produce m final-state partons. The corresponding expression for the real cross section
dσR is:

dσR = dΦ(m+1) |Mm+1|
2 F (m+1)

J . (2.9)
¶The presence of singularities in a QCD cross section computed in perturbation theory does not mean

that the theory itself is inconsistent. It simply means that one is considering a cross section that cannot be
reliably estimated using the perturbative expansion. At any energy scale, it is affected by non-perturbative
phenomena that are as big as the perturbative ones.

6

Catani, Seymour

Ellis, Kunzst, Soper
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Outline

• UV study: all alg/obs combos 2 types of subtractions

• Angularities as basis for all UV limits for φ-symm obs

• Examples:

• cross-check theta’-phi from theta-phi jets

• jet shapes for eta-phi jets @ pp

• 1-jettiness

• others...

• Compare/contrast with related work (see Teppo’s talk on Tues)
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Soft Functions:

• integrand: 

• measurement: 

• algorithm:

• e.g., 
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We present a method to calculate the soft function in Soft-Collinear Effective Theory to NLO

for N -jet events, defined with respect to arbitrarily complicated observables and algorithms, using

a subtraction-based method. We show that at one loop the singularity structure of all observ-

able/algorithm combinations can be classified as one of two types. Type I jets include jets defined

with inclusive algorithms for which a jet shape is measured. Type II jets include jets found with

exclusive algorithms, as well as jets for which only the direction and energy are measured. Cross

sections that are inclusive over a certain region of phase space, such as the forward region at a

hadron collider, are examples of Type II jets. We show that for a large class of measurements the

required subtractions are already known analytically, including traditional jet shape measurements

at hadron colliders. We demonstrate our method by calculating the soft functions for the case of

jets defined in η-φ space with an out-of-jet pT cut and a rapidity cut on the jets, as well as for the

case of 1-jettiness.

1. INTRODUCTION

It is well known that the perturbative expansion of jet
cross sections generally contains large logarithmic terms.
At each order in perturbation theory, there are powers
of logarithms of ratios of scales, such as the ratio of the
jet mass over the jet energy or the ratio of the invariant
mass between two jets over the energies of the jets. In
many cases, the presence of these logarithms spoils the
convergence of perturbation theory, and for that reason
such large logarithms are often resummed to all orders in
the perturbative expansion.

Several techniques have been developed to allow
the resummation of these logarithms [1], and recently
it has been shown how soft-collinear effective theory
(SCET) [2–5] can be used to resum logs. The first step
in resummation is to factorize an N -jet cross section into
hard, jet, and soft functions

dσN ∼ BN HN × [J ]n ⊗ SN . (1)

HereBN denotes the Born-level cross section in full QCD,
Hn reproduces the virtual corrections of full QCD, while
the J ’s and Sn together encode real emission diagrams
in the collinear and soft limits. There is one jet function
for each jet in the final state, and both the jet and soft
functions depend on the algorithm used to define the jets,
as well as the observables measured. Note that Eq. (1)
must be modified in the case of hadron collision, since
there will also be PDFs and, for some measurements,
beam functions [6]. At tree level, the hard, jet, and soft
functions are trivial, but each has to be calculated order
by order in perturbation theory.

The simplest jet definition involves exactly two jets,
each consisting of all particles in one of the two hemi-
spheres defined by a plane perpendicular to the thrust
axis, and is typically only used in e

+
e
− collisions. In this

case resummation has been achieved at NNNLL [7].
For more complicated jet definitions, however, the re-

quired calculations are more involved, and in many cases

we do not know the NLO results for the jet and soft func-
tions. One counter example is cone or inclusive kT -type
algorithms in e

+
e
− collisions, where the distance mea-

sure is the angle θ of each particle with respect to the
jet axis, and the total energy outside of the jets is less
than Λ. For this example, the jet and soft functions are
known to O(αs) [8].
Unlike for e+e−, jet definitions at hadron colliders are

usually required to be boost invariant. As a result, dis-
tance is usually measured in η-φ space, where η and φ
are defined with respect to the beam axis, and there is a
restriction on the total |pT| outside of jets, rather than
energy. Other, more inclusive jet definitions, such as N -
jettiness [9], also have complicated dependence on the
kinematics of the event, such that the NLO results for
the jet and soft functions are not known. The absence
of these results has been one of the biggest hurdles in
deriving more precise predictions for jet cross sections at
hadron colliders, and the solution to this problem is the
topic of the current paper.
A generic N -jet cross section is defined by a jet algo-

rithm, which identifies the regions of phase space belong-
ing to each jet and includes restrictions on the out-of-jet
radiation, and possibly one or more jet shapes, which
measure functions of the final state particles in each of
these jets. For an N -jet cross section, where an observ-
able is measured for m jets, the O(αs) contribution to
the soft function can be written as

S
(1)(A,M; {σm}) =

�

�i,j�

�
ddk

(2π)d
Nij(k)ΘA(k)∆M(k)

≡
�

�i,j�

�
ddk

(2π)d
Iij(A,M; k) , (2)

where Nij is defined as

Nij = −g
2
µ
2� Ti ·Tj

ni · nj

ni · k nj · k
2π δ(k2)θ(k0) . (3)
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�

�i,j�

�
ddk
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�

�i,j�

�
ddk
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2
µ
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ni · nj
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =

N�

k=0

Θ k
A∆

k
M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))

�

l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives

Θ k
cone(k) =θ

�
nk ·k
n̄k ·k

< tan
2R

2

�

Θ 0
cone(k) =

�
1−

N�

k=1

Θ k
cone(k)

�
θ(k0 < Λ) . (6)

At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as

S(1)
(A,M; {σm}) =�σ0�

�

k

δ (σk) (7)

+

�

k

�
4�σ2

k� − �σ1
k�
�� 1

σk

�

+

�

l �=k

δ (σl)

+

�

k

�
4�σ2

k� − 2�σ1
k�
�� log σk

σk

�

+

�

l �=k

δ (σl) ,

where we have defined the moments of the soft function

with respect to the σk as

�σn
k � =

�

l

� 1

0
dσl σ

n
k S(1)

(A,M; {σm})

≡
�

d
dk

(2π)d
Ink (k) . (8)

Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-

ments on the algorithm and measurement. In terms of

the integral in Eq. (2), the zeroth moment can be written

as

�σ0� =
�

�i,j�

�
d
dk

(2π)d
Nij(k)

�
�

k∈meas

Θ k
A(k)θ(σk(k) < 1)

+

�

k/∈meas

Θ k
A(k) +Θ 0

A(k)

�
, (9)

where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments

for measured jets (k ∈ meas) are

�σn>0
k � =

�

�i,j�

�
d
dk

(2π)d
Nij(k)σ

n
k (k)Θ

k
A(k)θ(σk(k) < 1) ,

(10)

while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference

Dn
k = �σn

k � − ��σn
k � , (11)

where �σn
i � are moments of S(1)

and ��σn
i � are moments of

�S(1)
. Note that in practice it is often useful to define the

moments σn
and differences Dn

for each color structure

separately, which we will denote by [σn
]ij and [Dn

]ij .

In the soft limit, k0 → 0, IR safety dictates that

σi(k) → 0. This implies that all higher moments (and

therefore their differences) vanish. For the zeroth mo-

ment, the observable theta functions are trivially satis-

fied, such that

lim
k0→0

�
I0(k)− Ĩ0(k)

�
∝

N�

k=0

�
Θ k

A(k)−Θ p
�A
(k)

�
= 0 . (12)

Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
i=0 Θ

i
A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired

result

lim
ni·k→0

�
I0(k)− Ĩ0(k)

�
∝

N�

k=0

�
Θ k

A(k)−Θ k
�A(k)

�
= 0 .

(13)
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Note that the moments �σn
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collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is
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tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
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We present a method to calculate the soft function in Soft-Collinear Effective Theory to NLO

for N -jet events, defined with respect to arbitrarily complicated observables and algorithms, using

a subtraction-based method. We show that at one loop the singularity structure of all observ-

able/algorithm combinations can be classified as one of two types. Type I jets include jets defined

with inclusive algorithms for which a jet shape is measured. Type II jets include jets found with

exclusive algorithms, as well as jets for which only the direction and energy are measured. Cross

sections that are inclusive over a certain region of phase space, such as the forward region at a

hadron collider, are examples of Type II jets. We show that for a large class of measurements the

required subtractions are already known analytically, including traditional jet shape measurements

at hadron colliders. We demonstrate our method by calculating the soft functions for the case of

jets defined in η-φ space with an out-of-jet pT cut and a rapidity cut on the jets, as well as for the

case of 1-jettiness.

1. INTRODUCTION

It is well known that the perturbative expansion of jet
cross sections generally contains large logarithmic terms.
At each order in perturbation theory, there are powers
of logarithms of ratios of scales, such as the ratio of the
jet mass over the jet energy or the ratio of the invariant
mass between two jets over the energies of the jets. In
many cases, the presence of these logarithms spoils the
convergence of perturbation theory, and for that reason
such large logarithms are often resummed to all orders in
the perturbative expansion.

Several techniques have been developed to allow
the resummation of these logarithms [1], and recently
it has been shown how soft-collinear effective theory
(SCET) [2–5] can be used to resum logs. The first step
in resummation is to factorize an N -jet cross section into
hard, jet, and soft functions

dσN ∼ BN HN × [J ]n ⊗ SN . (1)

HereBN denotes the Born-level cross section in full QCD,
Hn reproduces the virtual corrections of full QCD, while
the J ’s and Sn together encode real emission diagrams
in the collinear and soft limits. There is one jet function
for each jet in the final state, and both the jet and soft
functions depend on the algorithm used to define the jets,
as well as the observables measured. Note that Eq. (1)
must be modified in the case of hadron collision, since
there will also be PDFs and, for some measurements,
beam functions [6]. At tree level, the hard, jet, and soft
functions are trivial, but each has to be calculated order
by order in perturbation theory.

The simplest jet definition involves exactly two jets,
each consisting of all particles in one of the two hemi-
spheres defined by a plane perpendicular to the thrust
axis, and is typically only used in e

+
e
− collisions. In this

case resummation has been achieved at NNNLL [7].
For more complicated jet definitions, however, the re-

quired calculations are more involved, and in many cases

we do not know the NLO results for the jet and soft func-
tions. One counter example is cone or inclusive kT -type
algorithms in e

+
e
− collisions, where the distance mea-

sure is the angle θ of each particle with respect to the
jet axis, and the total energy outside of the jets is less
than Λ. For this example, the jet and soft functions are
known to O(αs) [8].
Unlike for e+e−, jet definitions at hadron colliders are

usually required to be boost invariant. As a result, dis-
tance is usually measured in η-φ space, where η and φ
are defined with respect to the beam axis, and there is a
restriction on the total |pT| outside of jets, rather than
energy. Other, more inclusive jet definitions, such as N -
jettiness [9], also have complicated dependence on the
kinematics of the event, such that the NLO results for
the jet and soft functions are not known. The absence
of these results has been one of the biggest hurdles in
deriving more precise predictions for jet cross sections at
hadron colliders, and the solution to this problem is the
topic of the current paper.
A generic N -jet cross section is defined by a jet algo-

rithm, which identifies the regions of phase space belong-
ing to each jet and includes restrictions on the out-of-jet
radiation, and possibly one or more jet shapes, which
measure functions of the final state particles in each of
these jets. For an N -jet cross section, where an observ-
able is measured for m jets, the O(αs) contribution to
the soft function can be written as

S
(1)(A,M; {σm}) =

�

�i,j�

�
ddk

(2π)d
Nij(k)ΘA(k)∆M(k)

≡
�

�i,j�

�
ddk

(2π)d
Iij(A,M; k) , (2)

where Nij is defined as

Nij = −g
2
µ
2� Ti ·Tj

ni · nj

ni · k nj · k
2π δ(k2)θ(k0) . (3)
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =

N�

k=0

Θ k
A∆

k
M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))

�

l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives

Θ k
cone(k) =θ

�
nk ·k
n̄k ·k

< tan
2R

2

�

Θ 0
cone(k) =

�
1−

N�

k=1

Θ k
cone(k)

�
θ(k0 < Λ) . (6)

At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as

S(1)
(A,M; {σm}) =�σ0�

�

k

δ (σk) (7)

+

�

k

�
4�σ2

k� − �σ1
k�
�� 1

σk

�

+

�

l �=k

δ (σl)

+

�

k

�
4�σ2

k� − 2�σ1
k�
�� log σk

σk

�

+

�

l �=k

δ (σl) ,

where we have defined the moments of the soft function

with respect to the σk as

�σn
k � =

�

l

� 1

0
dσl σ

n
k S(1)

(A,M; {σm})

≡
�

d
dk

(2π)d
Ink (k) . (8)

Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-

ments on the algorithm and measurement. In terms of

the integral in Eq. (2), the zeroth moment can be written

as

�σ0� =
�

�i,j�

�
d
dk

(2π)d
Nij(k)

�
�

k∈meas

Θ k
A(k)θ(σk(k) < 1)

+

�

k/∈meas

Θ k
A(k) +Θ 0

A(k)

�
, (9)

where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments

for measured jets (k ∈ meas) are

�σn>0
k � =

�

�i,j�

�
d
dk

(2π)d
Nij(k)σ

n
k (k)Θ

k
A(k)θ(σk(k) < 1) ,

(10)

while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference
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k = �σn
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k � , (11)

where �σn
i � are moments of S(1)

and ��σn
i � are moments of

�S(1)
. Note that in practice it is often useful to define the

moments σn
and differences Dn

for each color structure

separately, which we will denote by [σn
]ij and [Dn

]ij .

In the soft limit, k0 → 0, IR safety dictates that

σi(k) → 0. This implies that all higher moments (and

therefore their differences) vanish. For the zeroth mo-

ment, the observable theta functions are trivially satis-

fied, such that

lim
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Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
i=0 Θ

i
A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired

result
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M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives

Θ k
cone(k) =θ

�
nk ·k
n̄k ·k

< tan
2R

2

�

Θ 0
cone(k) =

�
1−

N�

k=1

Θ k
cone(k)

�
θ(k0 < Λ) . (6)

At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as

S(1)
(A,M; {σm}) =�σ0�
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where we have defined the moments of the soft function

with respect to the σk as
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Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-

ments on the algorithm and measurement. In terms of

the integral in Eq. (2), the zeroth moment can be written

as
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where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments

for measured jets (k ∈ meas) are
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while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference
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where �σn
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. Note that in practice it is often useful to define the

moments σn
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separately, which we will denote by [σn
]ij and [Dn

]ij .

In the soft limit, k0 → 0, IR safety dictates that
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Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned
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i
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tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired

result
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form
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where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))
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l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives
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cone(k) =θ
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Θ 0
cone(k) =
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At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as
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with respect to the σk as
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Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-

ments on the algorithm and measurement. In terms of

the integral in Eq. (2), the zeroth moment can be written

as
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where the subscript “meas” denotes the set of m jets for
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for measured jets (k ∈ meas) are
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while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference
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where �σn
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. Note that in practice it is often useful to define the

moments σn
and differences Dn

for each color structure

separately, which we will denote by [σn
]ij and [Dn
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In the soft limit, k0 → 0, IR safety dictates that

σi(k) → 0. This implies that all higher moments (and

therefore their differences) vanish. For the zeroth mo-

ment, the observable theta functions are trivially satis-

fied, such that

lim
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Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
i=0 Θ

i
A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired

result
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�
∝

N�

k=0

�
Θ k

A(k)−Θ k
�A(k)

�
= 0 .

(13)

σi(k)

2

In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
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the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =
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M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))
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l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives

Θ k
cone(k) =θ
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cone(k) =
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At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as
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where we have defined the moments of the soft function

with respect to the σk as
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≡
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(2π)d
Ink (k) . (8)

Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-

ments on the algorithm and measurement. In terms of

the integral in Eq. (2), the zeroth moment can be written

as
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where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments

for measured jets (k ∈ meas) are
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while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference
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k = �σn

k � − ��σn
k � , (11)

where �σn
i � are moments of S(1)

and ��σn
i � are moments of

�S(1)
. Note that in practice it is often useful to define the

moments σn
and differences Dn

for each color structure

separately, which we will denote by [σn
]ij and [Dn

]ij .

In the soft limit, k0 → 0, IR safety dictates that

σi(k) → 0. This implies that all higher moments (and

therefore their differences) vanish. For the zeroth mo-

ment, the observable theta functions are trivially satis-

fied, such that
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Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
i=0 Θ

i
A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired

result

lim
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�
= 0 .
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The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas

�
Θ k

A(k)−Θ k
�A(k)

�
(14)

+
�

k∈meas

�
Θ k

A(k)θ(σk(k) < 1)−Θ k
�A(k)θ(�σk(k) < 1)

�
,

while for the higher moments we find

lim
k0→∞

�
Ink (k)− Ĩnk (k)

�
∝σn

k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
k0→∞

�

p∈Type I

�
θ(σp(k) < 1)− θ(�σp(k) < 1)

�

+ lim
k0→∞

�

p∈Type II

�
Θ p

A(k)−Θ p
�A
(k)

�
, (18)

while Eq. (15) gives

lim
k0→∞

�
Ink∈Type I − Ĩnk∈Type I

�
∝ (19)

lim
k0→∞

�
σn
k (k)θ(σk(k) < 1)− �σn

k (k)θ(�σk(k) < 1)

�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
�

i

δ(σi) +
�

i

D1
i

�

j �=i

δ (σj)

�
1

σi

�

+

, (20)

where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.

FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is

�S(1) =
�

�i,j�

��
Sincl
ij +

N�

k

Sk
ij

� �m�

l

δ(τ la)

+
�m�

k

Smeas
ij (τka )

�m�

l �=k

δ(τ la)

�
. (21)

Here, �m is set to be the number of Type I jets in S, while
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =

N�

k=0

Θ k
A∆

k
M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))

�

l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives

Θ k
cone(k) =θ
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n̄k ·k

< tan
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cone(k) =
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At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as
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where we have defined the moments of the soft function

with respect to the σk as
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Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-

ments on the algorithm and measurement. In terms of

the integral in Eq. (2), the zeroth moment can be written

as
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where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments

for measured jets (k ∈ meas) are
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while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference
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k = �σn
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k � , (11)

where �σn
i � are moments of S(1)
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. Note that in practice it is often useful to define the

moments σn
and differences Dn

for each color structure

separately, which we will denote by [σn
]ij and [Dn

]ij .

In the soft limit, k0 → 0, IR safety dictates that

σi(k) → 0. This implies that all higher moments (and

therefore their differences) vanish. For the zeroth mo-

ment, the observable theta functions are trivially satis-

fied, such that
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Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
i=0 Θ

i
A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =

N�

k=0

Θ k
A∆

k
M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))

�

l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives

Θ k
cone(k) =θ
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At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as
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Here we have assumed that all σi are normalized to 1.
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its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is
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However, consider the difference of two soft functions,
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separately, which we will denote by [σn
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In the soft limit, k0 → 0, IR safety dictates that

σi(k) → 0. This implies that all higher moments (and

therefore their differences) vanish. For the zeroth mo-

ment, the observable theta functions are trivially satis-

fied, such that
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
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the measurement M, and σi is the value of the ith jet
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form
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where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))
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δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
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l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives
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Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-
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the integral in Eq. (2), the zeroth moment can be written
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where the subscript “meas” denotes the set of m jets for
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Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will
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where �σn
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In the soft limit, k0 → 0, IR safety dictates that

σi(k) → 0. This implies that all higher moments (and
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Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
i=0 Θ

i
A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired

result
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =
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k=0

Θ k
A∆

k
M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))
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l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives
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�
1−

N�

k=1

Θ k
cone(k)

�
θ(k0 < Λ) . (6)

At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as
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Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-
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Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference
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where �σn
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. Note that in practice it is often useful to define the
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separately, which we will denote by [σn
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In the soft limit, k0 → 0, IR safety dictates that
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therefore their differences) vanish. For the zeroth mo-
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fied, such that
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Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
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A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
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the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =
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where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))
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δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives
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with the divergences arising from the soft (k0 → 0),
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its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.
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as its energy goes to 0. This implies that it is assigned
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tells us that σi(k) → 0. In addition, for fixed k0, any
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limit, such that Θ k
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The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas

�
Θ k

A(k)−Θ k
�A(k)

�
(14)

+
�

k∈meas

�
Θ k

A(k)θ(σk(k) < 1)−Θ k
�A(k)θ(�σk(k) < 1)

�
,

while for the higher moments we find

lim
k0→∞

�
Ink (k)− Ĩnk (k)

�
∝σn

k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
k0→∞

�

p∈Type I

�
θ(σp(k) < 1)− θ(�σp(k) < 1)

�

+ lim
k0→∞

�

p∈Type II

�
Θ p

A(k)−Θ p
�A
(k)

�
, (18)

while Eq. (15) gives

lim
k0→∞

�
Ink∈Type I − Ĩnk∈Type I

�
∝ (19)

lim
k0→∞

�
σn
k (k)θ(σk(k) < 1)− �σn

k (k)θ(�σk(k) < 1)

�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives
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where we have used that the (log σi/σi)+ distribution
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can be fully computed at one loop. We will now illus-
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FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .
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Here, �m is set to be the number of Type I jets in S, while

2

In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =

N�

k=0

Θ k
A∆

k
M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))
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l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet
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At one loop, it can be shown that the soft function is
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be written as
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Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-
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where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments

for measured jets (k ∈ meas) are

�σn>0
k � =

�

�i,j�

�
d
dk

(2π)d
Nij(k)σ

n
k (k)Θ

k
A(k)θ(σk(k) < 1) ,

(10)

while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference
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where �σn
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. Note that in practice it is often useful to define the
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separately, which we will denote by [σn
]ij and [Dn
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sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
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shape. We will restrict ourselves to measurements of the

form
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where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables
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Note that for a jet where no jet shape is measured, ∆ k
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Here we have assumed that all σi are normalized to 1.
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where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments

for measured jets (k ∈ meas) are

�σn>0
k � =

�

�i,j�

�
d
dk

(2π)d
Nij(k)σ

n
k (k)Θ

k
A(k)θ(σk(k) < 1) ,

(10)

while for k /∈ meas, �σn>0
k � = 0.
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its. This means that they have to be calculated an-
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =
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k=0

Θ k
A∆

k
M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))
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l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives
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�
nk ·k
n̄k ·k

< tan
2R

2

�

Θ 0
cone(k) =
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At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as
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Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-

ments on the algorithm and measurement. In terms of

the integral in Eq. (2), the zeroth moment can be written
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where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments
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while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference
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k � , (11)

where �σn
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Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
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A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
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In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =
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M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))
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Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives
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�
∝

N�

k=0

�
Θ k

A(k)−Θ k
�A(k)

�
= 0 .

(13)

2

In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents
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where Θ i
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tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
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Note that for a jet where no jet shape is measured, ∆ k
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4�σ2
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�� log σk

σk

�

+

�

l �=k

δ (σl) ,

where we have defined the moments of the soft function

with respect to the σk as

�σn
k � =

�

l

� 1

0
dσl σ

n
k S(1)

(A,M; {σm})

≡
�

d
dk

(2π)d
Ink (k) . (8)

Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-

ments on the algorithm and measurement. In terms of

the integral in Eq. (2), the zeroth moment can be written

as

�σ0� =
�

�i,j�

�
d
dk

(2π)d
Nij(k)

�
�
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Θ k
A(k)θ(σk(k) < 1)

+

�
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Θ k
A(k) +Θ 0

A(k)

�
, (9)

where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments

for measured jets (k ∈ meas) are

�σn>0
k � =
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�i,j�

�
d
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(2π)d
Nij(k)σ

n
k (k)Θ

k
A(k)θ(σk(k) < 1) ,

(10)

while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference

Dn
k = �σn

k � − ��σn
k � , (11)

where �σn
i � are moments of S(1)

and ��σn
i � are moments of

�S(1)
. Note that in practice it is often useful to define the

moments σn
and differences Dn

for each color structure

separately, which we will denote by [σn
]ij and [Dn

]ij .

In the soft limit, k0 → 0, IR safety dictates that

σi(k) → 0. This implies that all higher moments (and

therefore their differences) vanish. For the zeroth mo-

ment, the observable theta functions are trivially satis-

fied, such that
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A(k)−Θ p
�A
(k)

�
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Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
i=0 Θ

i
A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired

result

lim
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�A(k)

�
= 0 .
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3

The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
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�
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A(k)−Θ k
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while for the higher moments we find

lim
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�
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l
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− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
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�
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�
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while Eq. (15) gives

lim
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�
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�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
�

i

δ(σi) +
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i

D1
i
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j �=i

δ (σj)

�
1

σi

�

+

, (20)

where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.

FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is

�S(1) =
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Sincl
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δ(τ la)

�
. (21)

Here, �m is set to be the number of Type I jets in S, while
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The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas

�
Θ k

A(k)−Θ k
�A(k)

�
(14)

+
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A(k)θ(σk(k) < 1)−Θ k
�A(k)θ(�σk(k) < 1)
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,

while for the higher moments we find

lim
k0→∞

�
Ink (k)− Ĩnk (k)

�
∝σn

k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
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p∈Type I

�
θ(σp(k) < 1)− θ(�σp(k) < 1)
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+ lim
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(k)

�
, (18)

while Eq. (15) gives

lim
k0→∞

�
Ink∈Type I − Ĩnk∈Type I
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k (k)θ(σk(k) < 1)− �σn
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�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
�

i

δ(σi) +
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D1
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, (20)

where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.

FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is

�S(1) =
�

�i,j�

��
Sincl
ij +

N�

k

Sk
ij

� �m�

l

δ(τ la)

+
�m�

k
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ij (τka )
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Here, �m is set to be the number of Type I jets in S, while

only alg. matterswhat matters depends on 
whether alg. or obs. “wins”
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The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas

�
Θ k

A(k)−Θ k
�A(k)

�
(14)

+
�

k∈meas

�
Θ k

A(k)θ(σk(k) < 1)−Θ k
�A(k)θ(�σk(k) < 1)

�
,

while for the higher moments we find

lim
k0→∞

�
Ink (k)− Ĩnk (k)

�
∝σn

k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
k0→∞
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�
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(k)
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, (18)

while Eq. (15) gives

lim
k0→∞

�
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.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
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δ(σi) +
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+
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where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.

FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is
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+
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Here, �m is set to be the number of Type I jets in S, while

3

The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas
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Θ k

A(k)−Θ k
�A(k)
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(14)

+
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�A(k)θ(�σk(k) < 1)
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,

while for the higher moments we find

lim
k0→∞
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Ink (k)− Ĩnk (k)
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k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞
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A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving
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Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})
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where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.
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π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .
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Here, �m is set to be the number of Type I jets in S, while

3

The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞
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I0(k)− Ĩ0(k)
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while for the higher moments we find

lim
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In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
k0→∞

�

p∈Type I

�
θ(σp(k) < 1)− θ(�σp(k) < 1)

�

+ lim
k0→∞

�

p∈Type II

�
Θ p

A(k)−Θ p
�A
(k)

�
, (18)

while Eq. (15) gives

lim
k0→∞

�
Ink∈Type I − Ĩnk∈Type I

�
∝ (19)

lim
k0→∞

�
σn
k (k)θ(σk(k) < 1)− �σn

k (k)θ(�σk(k) < 1)

�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
�

i

δ(σi) +
�

i

D1
i

�

j �=i

δ (σj)

�
1

σi

�

+

, (20)

where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.

FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is

�S(1) =
�

�i,j�

��
Sincl
ij +

N�

k

Sk
ij

� �m�

l

δ(τ la)

+
�m�

k

Smeas
ij (τka )

�m�

l �=k

δ(τ la)

�
. (21)

Here, �m is set to be the number of Type I jets in S, while

+

⇒ 2 types of soft functions
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Type I vs. Type II

• Type I:                                                        (obs. “wins”) 

• incl. kt/cone with any angularity a < 2 (or obs. with same UV)

• excl. kt with 1 < a < 2 

• N-jettiness

• N-jet threshold at e+e- and pp colliders

• Type II:                                                     (alg. “wins”)

• “unmeas.” jets (no shape is probed)

• excl. kt with a < 1

3

The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas

�
Θ k

A(k)−Θ k
�A(k)

�
(14)

+
�

k∈meas

�
Θ k

A(k)θ(σk(k) < 1)−Θ k
�A(k)θ(�σk(k) < 1)

�
,

while for the higher moments we find

lim
k0→∞

�
Ink (k)− Ĩnk (k)

�
∝σn

k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
k0→∞

�

p∈Type I

�
θ(σp(k) < 1)− θ(�σp(k) < 1)

�

+ lim
k0→∞

�

p∈Type II

�
Θ p

A(k)−Θ p
�A
(k)

�
, (18)

while Eq. (15) gives

lim
k0→∞

�
Ink∈Type I − Ĩnk∈Type I

�
∝ (19)

lim
k0→∞

�
σn
k (k)θ(σk(k) < 1)− �σn

k (k)θ(�σk(k) < 1)

�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
�

i

δ(σi) +
�

i

D1
i

�

j �=i

δ (σj)

�
1

σi

�

+

, (20)

where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.

FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is

�S(1) =
�

�i,j�

��
Sincl
ij +

N�

k

Sk
ij

� �m�

l

δ(τ la)

+
�m�

k

Smeas
ij (τka )

�m�

l �=k

δ(τ la)

�
. (21)

Here, �m is set to be the number of Type I jets in S, while
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The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas

�
Θ k

A(k)−Θ k
�A(k)

�
(14)

+
�

k∈meas

�
Θ k

A(k)θ(σk(k) < 1)−Θ k
�A(k)θ(�σk(k) < 1)

�
,

while for the higher moments we find

lim
k0→∞

�
Ink (k)− Ĩnk (k)

�
∝σn

k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
k0→∞

�

p∈Type I

�
θ(σp(k) < 1)− θ(�σp(k) < 1)

�

+ lim
k0→∞

�

p∈Type II

�
Θ p

A(k)−Θ p
�A
(k)

�
, (18)

while Eq. (15) gives

lim
k0→∞

�
Ink∈Type I − Ĩnk∈Type I

�
∝ (19)

lim
k0→∞

�
σn
k (k)θ(σk(k) < 1)− �σn

k (k)θ(�σk(k) < 1)

�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
�

i

δ(σi) +
�

i

D1
i

�

j �=i

δ (σj)

�
1

σi

�

+

, (20)

where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.

FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is

�S(1) =
�

�i,j�

��
Sincl
ij +

N�

k

Sk
ij

� �m�

l

δ(τ la)

+
�m�

k

Smeas
ij (τka )

�m�

l �=k

δ(τ la)

�
. (21)

Here, �m is set to be the number of Type I jets in S, while
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Angularities as Basis of Obs. in UV

• def’n (Q arbitrary normalization):

• for fixed τ, as E → ∞ (so θ → 0):

• this is the most general, IR safe (for a < 2) result in θ → 0 limit

• results exist for jet shapes for all a < 1 (will use as “subtractions”)...

τa =
1
Q

�

i

Ei(sin θi)a(1− |cos θi|)1−a =
1
Q

�

i

|pT
i |e−|ηi|(1−a)

τa → Ei θ
2−a

Ellis, Hornig, Lee, Walsh, Vermilion

Berger, Kucs, Sterman
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Demonstration of Type I vs. II in k+k--plane
8
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FIG. 1: (a) Demonstration of the dominance in the integration region of δ(τk) over Θ
k
A for cone and inclusive kT -type algorithms

for large k− over all observables spanned by angularities with a < 1. The integration region of in-jet radiation for various values
of the angularity parameter a together with a Type I jet algorithm of size R is demonstrated by the shaded regions. Changing
the jet size from R to R� only changes the result by a finite amount in this case (in the k0 → ∞ limit; that the k0 → 0 limit
is also not affected can only be seen by also including out-of-jet radiation). Thus, all algorithms of this type are in the same
equivalency class, so long as the same observable is used. Conversely, regardless of the algorithm used, there are singularities
in the difference between two elements of this class if the observable chosen is different. (b) Regions of integration that include
both in-jet and (for the dijet case) out-of-jet radiation within the hemisphere with k+ < k− for two Type I algorithms, a
hemisphere algorithm and an inclusive kT -type/cone algorithm for dijet events for the case where τa=0 is measured for both
algorithms, as discussed in Sec. 4A. Again, the difference in algorithms is a finite effect.

We will also refer to a “Type I (II) algorithm” as an algorithm that is less (more) restrictive than all observables in
the space spanned by angularities with a < 1 (i.e., all IR-safe, factorizable and azimuthally symmetric observables).

Type I algorithms can be identified with those that would accept gluons of infinite energy that remain a finite
distance away from the jet axis; in type II algorithms, such gluons must have their angle relative to the beam axis
vanishing in the k0 → ∞ limit. (TODO) Type I algorithms include many if not most of the most phenomenologically TODO

true?
quan-
tify
van-
ishing
limit?

relevant algorithms, including the inclusive (TODO) kT -type (kT , anti-kT and CA) algorithms and modern cone

TODO

incl. vs.
excl.
back-
wards?

algorithms, as well as algorithms like hemisphere algorithms in back-to-back dijet events and algorithms like N-
jettiness. Type II algorithms include the exclusive kT algorithm, which gives a curve that asymptotes to the a = 1
curve of Fig. 1 [13]. In principle one could also write down an IR-safe algorithm that asymptotes to a line that is
between the a = 1 line and a line of constant slope in the k+, k− plane. If it asymptotes to a line that corresponds
to an angularity line with a = a∗, than this algorithm together with all angularities with a > a∗ will be a Type I soft
function and those with a < a∗ will be Type II.

The explicit subtraction that we present in this paper will be of Type I, and hence can be used as a subtraction for
any other algorithm/observable combination of Type I. One can also in principle use the technique of this paper to
Type II algorithm/observable combinations once an analytic result within this class in known. Since the singularities
of Type II soft functions are independent of the observable, the easiest case is to calculate the soft function for an
algorithm of interest with no measurement. (To cover the class of all soft functions of Type II with a single subtraction,
one would need to simultaneously consider a class of algorithms that interpolate between the Type I and Type II
algorithms which in principle can be done in the same way that the entire class of observables were simultaneously
considered via the study of angularities.) However, we again emphasize that to obtain the soft function for nearly all
cases that are currently phenomenologically relevant, only the subtraction considered in this paper (Type I) is needed.

4. EXAMPLES OF APPLICATIONS OF TYPE I SUBTRACTIONS

In this section, we first present applications of the Type I subtractions for many phenomenologically interesting
examples. We begin with a toy example in Sec. 4A, using the subtractions for the case of 2, back-to-back jets, to
obtain the 1-loop soft function for hemisphere jets where in both cases the thrust of each jet is measured. While this
the results here are not new, this example provides a nice demonstration and check of the method since the results
are known completely analytically.

We then present the numerical techniques we use for the remainder of the examples in Sec. 4B, and then apply these
methods to the examples of hadronic collider algorithms in Sec. 4C (for both threshold resummation in Sec. 4C 1

← (exclusive kt)

← (cone/inclusive kt)

• Note: any measurement (w/ a < 1) does 
not change divergences of Type II
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Final Result

• we use jet shape calc. as subtraction (variation needed for threshold)

• moments only involve ∫dΩ:

3

The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas

�
Θ k

A(k)−Θ k
�A(k)

�
(14)

+
�

k∈meas

�
Θ k

A(k)θ(σk(k) < 1)−Θ k
�A(k)θ(�σk(k) < 1)

�
,

while for the higher moments we find

lim
k0→∞

�
Ink (k)− Ĩnk (k)

�
∝σn

k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
k0→∞

�

p∈Type I

�
θ(σp(k) < 1)− θ(�σp(k) < 1)

�

+ lim
k0→∞

�

p∈Type II

�
Θ p

A(k)−Θ p
�A
(k)

�
, (18)

while Eq. (15) gives

lim
k0→∞

�
Ink∈Type I − Ĩnk∈Type I

�
∝ (19)

lim
k0→∞

�
σn
k (k)θ(σk(k) < 1)− �σn

k (k)θ(�σk(k) < 1)

�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
�

i

δ(σi) +
�

i

D1
i

�

j �=i

δ (σj)

�
1

σi

�

+

, (20)

where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.

FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is

�S(1) =
�

�i,j�

��
Sincl
ij +

N�

k

Sk
ij

� �m�

l

δ(τ la)

+
�m�

k

Smeas
ij (τka )

�m�

l �=k

δ(τ la)

�
. (21)

Here, �m is set to be the number of Type I jets in S, while

3

The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas

�
Θ k

A(k)−Θ k
�A(k)

�
(14)

+
�

k∈meas

�
Θ k

A(k)θ(σk(k) < 1)−Θ k
�A(k)θ(�σk(k) < 1)

�
,

while for the higher moments we find

lim
k0→∞

�
Ink (k)− Ĩnk (k)

�
∝σn

k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
k0→∞

�

p∈Type I

�
θ(σp(k) < 1)− θ(�σp(k) < 1)

�

+ lim
k0→∞

�

p∈Type II

�
Θ p

A(k)−Θ p
�A
(k)

�
, (18)

while Eq. (15) gives

lim
k0→∞

�
Ink∈Type I − Ĩnk∈Type I

�
∝ (19)

lim
k0→∞

�
σn
k (k)θ(σk(k) < 1)− �σn

k (k)θ(�σk(k) < 1)

�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
�

i

δ(σi) +
�

i

D1
i

�

j �=i

δ (σj)

�
1

σi

�

+

, (20)

where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.

FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is

�S(1) =
�

�i,j�

��
Sincl
ij +

N�

k

Sk
ij

� �m�

l

δ(τ la)

+
�m�

k

Smeas
ij (τka )

�m�

l �=k

δ(τ la)

�
. (21)

Here, �m is set to be the number of Type I jets in S, while

2

In Eq. (2), the sum goes over all pairs of soft emission

sources i and j, which includes the jets and possibly the

beams, in the case of hadron collisions. The function ΘA
encodes the action of the jet algorithm A, ∆M represents

the measurement M, and σi is the value of the ith jet

shape. We will restrict ourselves to measurements of the

form

ΘA∆M =

N�

k=0

Θ k
A∆

k
M , (4)

where Θ i
A restricts the soft gluon k to be part of jet i,

Θ 0
A forces the k to be outside of all jets, while still con-

tributing to the jet cross section (typically enforcing a

maximum energy or pT value). The function ∆ i
M mea-

sures an observable in jet i, while setting the observables

in the other jets to zero

∆ k
M(k) = δ (σk − σk(k))

�

l �=k

δ (σl) . (5)

Note that for a jet where no jet shape is measured, ∆ k
M =�

l δ(σl).

As an example of a jet algorithm, consider a cone algo-

rithm of size R at an e+e− collider, where the out-of-jet

energy is restricted to be less than Λ. This gives

Θ k
cone(k) =θ

�
nk ·k
n̄k ·k

< tan
2R

2

�

Θ 0
cone(k) =

�
1−

N�

k=1

Θ k
cone(k)

�
θ(k0 < Λ) . (6)

At one loop, it can be shown that the soft function is

at most 1/�2 divergent, which means that the result can

be written as

S(1)
(A,M; {σm}) =�σ0�

�

k

δ (σk) (7)

+

�

k

�
4�σ2

k� − �σ1
k�
�� 1

σk

�

+

�

l �=k

δ (σl)

+

�

k

�
4�σ2

k� − 2�σ1
k�
�� log σk

σk

�

+

�

l �=k

δ (σl) ,

where we have defined the moments of the soft function

with respect to the σk as

�σn
k � =

�

l

� 1

0
dσl σ

n
k S(1)

(A,M; {σm})

≡
�

d
dk

(2π)d
Ink (k) . (8)

Here we have assumed that all σi are normalized to 1.

Note that we are suppressing the dependence of the mo-

ments on the algorithm and measurement. In terms of

the integral in Eq. (2), the zeroth moment can be written

as

�σ0� =
�

�i,j�

�
d
dk

(2π)d
Nij(k)

�
�

k∈meas

Θ k
A(k)θ(σk(k) < 1)

+

�

k/∈meas

Θ k
A(k) +Θ 0

A(k)

�
, (9)

where the subscript “meas” denotes the set of m jets for

which an observable is measured. The higher moments

for measured jets (k ∈ meas) are

�σn>0
k � =

�

�i,j�

�
d
dk

(2π)d
Nij(k)σ

n
k (k)Θ

k
A(k)θ(σk(k) < 1) ,

(10)

while for k /∈ meas, �σn>0
k � = 0.

Note that the moments �σn
i � are in general divergent,

with the divergences arising from the soft (k0 → 0),

collinear (ni · k → 0), and ultraviolet (k0 → ∞) lim-

its. This means that they have to be calculated an-

alytically, with regulators for all divergences, which is

in general only feasible for the simplest jet algorithms.

However, consider the difference of two soft functions,

S(A,M; {σm}) and �S( �A, �M; {�σm}), which are defined

with different algorithms and measurements. We will

look at the difference

Dn
k = �σn

k � − ��σn
k � , (11)

where �σn
i � are moments of S(1)

and ��σn
i � are moments of

�S(1)
. Note that in practice it is often useful to define the

moments σn
and differences Dn

for each color structure

separately, which we will denote by [σn
]ij and [Dn

]ij .

In the soft limit, k0 → 0, IR safety dictates that

σi(k) → 0. This implies that all higher moments (and

therefore their differences) vanish. For the zeroth mo-

ment, the observable theta functions are trivially satis-

fied, such that

lim
k0→0

�
I0(k)− Ĩ0(k)

�
∝

N�

k=0

�
Θ k

A(k)−Θ p
�A
(k)

�
= 0 . (12)

Here we have used the fact that gluon will not be vetoed

as its energy goes to 0. This implies that it is assigned

either to be in a jet or to the out-of-jet region, such that�N
i=0 Θ

i
A = 1 for any algorithm.

In the collinear limit, ni ·k → 0, IR safety once again

tells us that σi(k) → 0. In addition, for fixed k0, any
IR-safe algorithm will assign the emission to jet i in this

limit, such that Θ k
A = δik. This leads to the desired

result

lim
ni·k→0

�
I0(k)− Ĩ0(k)

�
∝

N�

k=0

�
Θ k

A(k)−Θ k
�A(k)

�
= 0 .

(13)

(nth moment w.r.t. kth obs)

D0 = �σ0� − �σ̃0�
(0th moment w.r.t. all obs)

Ecut(Ω) = { pTcut/ sin θ

Ecut

..
.
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and

Bn
nn̄ =

�
d4k

(2π)4

� 1

0
dτ τDn

nn̄(τ)

=
αsCF

π

�
dk+dk−

k+k−

� 1

0
dτ τδ(τ − k+/Q)

�
θ(k+ < k−)− θ(k+ < k− tan2 R/2)

�

=
αsCF

π

�
dk+dk−

k+k−
k+

Q
θ(k+ < Q)

�
θ(k+ < k−)− θ(k+ < k− tan2 R/2)

�
. (45)

The region in Eq. (44) is shown in Fig. 1. As expected, both contributions are finite and well suited for numerical
evaluation. Of course, in this case we can easily do the integrals analytically and, as expected, the results for An

nn̄ and
Bn

nn̄ cancel the coefficient of the delta function in the second line of Eq. (39) and the plus distribution in the third
line, respectively.

B. Numerical Integration

In all of the examples we consider in this paper, the following conditions are met:

• All jets whose shape is not measured have the same algorithm for the target and subtraction. This limits us to
inclusive kT and cone-type algorithms.

• There is no explicit energy dependence of soft gluons in Θ k
A(k). This includes cone and inclusive kT -type

algorithms as well as N-jettiness with any measure Qi in the notation of [14].

• The observables are linear in energy of the gluon for all k (as they must be in the UV and IR limits).

Other cases must be considered case-by-case. However, if these conditions hold true, the integral over k0 can in
general be done analytically, leaving a simple integral over solid angle to be computed numerically,

D0 = −αs

π

�

�i,j�

Ti ·Tj

�
dΩ

4π

ni · nj

(1− k̂ · n̂i)(1− k̂ · n̂j)

� N�

k=1

�
Θ k

A −Θ k
Ã
�
log

k̃kmax(Ω)

Λ
(46)

+

�
1−

N�

k=1

Θ k
A

�
log

Ecut(Ω)

Λ
+

N�

k=1

Θ k
A log

kkmax(Ω)

k̃kmax(Ω)

�
,

where kkmax and k̃kmax are defined by kkmax = k0/σk(k) and k̃kmax = k0/�σk (and so the last factor vanishes when τ = τ̃).
For our particular subtraction we have

k̃kmax(Ω) = Qi (1 + k̂ · nk)
−a/2(1− k̂ · nk)

−1+a/2 . (47)

(TODO) TODO

can we
allow
for obs
that
only
go as
E1 as
θ → 0

kkmax(Ω) = k0/σk(k)
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and

Bn
nn̄ =

�
d4k

(2π)4

� 1

0
dτ τDn

nn̄(τ)

=
αsCF

π

�
dk+dk−

k+k−

� 1

0
dτ τδ(τ − k+/Q)

�
θ(k+ < k−)− θ(k+ < k− tan

2 R/2)
�

=
αsCF

π

�
dk+dk−

k+k−
k+

Q
θ(k+ < Q)

�
θ(k+ < k−)− θ(k+ < k− tan

2 R/2)
�
. (45)

The region in Eq. (44) is shown in Fig. 1. As expected, both contributions are finite and well suited for numerical

evaluation. Of course, in this case we can easily do the integrals analytically and, as expected, the results for An
nn̄ and

Bn
nn̄ cancel the coefficient of the delta function in the second line of Eq. (39) and the plus distribution in the third

line, respectively.

B. Numerical Integration

In many cases of interest (including cone and inclusive kT -type algorithms as well as N-jettiness with any measure Qi

in the notation of [14]), there is no explicit energy dependence of soft gluons in Θ k
A(k). In addition, many observables

are linear in energy of the gluon for all k (as they must be in the UV and IR limits) (TODO). If both of these TODO

does
this just
make
kmax

harder?

conditions hold true, the integral over k0 can in general be done analytically, leaving a simple integral over solid angle

to be computed numerically,

D0
= −αs

π

�

�i,j�

Ti ·Tj

�
dΩ

4π

ni · nj

(1− k̂ · n̂i)(1− k̂ · n̂j)

� N�

k=1

�
Θ k

A −Θ k
Ã
�
log

k̃max(Ω)

Λ
(46)

+

�
1−

N�

k=1

Θ k
A

�
log

Ecut(Ω)

Λ
+ log

kmax(Ω)

k̃max(Ω)

N�

k=1

Θ k
A

�
,

where kmax and k̃max are defined by kmax = k0/τ(k) and k̃max = k0/τ̃(k) (and so the last factor vanishes when τ = τ̃).
For our particular subtraction we have.

k̃max(Ω) = Qi (1 + k̂ · nk)
−a/2

(1− k̂ · nk)
−1+a/2 . (47)

(TODO) TODO

can we
allow
for obs
that
only
go as
E1 as
θ → 0

× {
diff. from alg.

{
diff. from veto

{
diff. from obs.
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and

Bn
nn̄ =

�
d4k

(2π)4

� 1

0
dτ τDn

nn̄(τ)

=
αsCF

π

�
dk+dk−

k+k−

� 1

0
dτ τδ(τ − k+/Q)

�
θ(k+ < k−)− θ(k+ < k− tan2 R/2)

�

=
αsCF

π

�
dk+dk−

k+k−
k+

Q
θ(k+ < Q)

�
θ(k+ < k−)− θ(k+ < k− tan2 R/2)

�
. (45)

The region in Eq. (44) is shown in Fig. 1. As expected, both contributions are finite and well suited for numerical
evaluation. Of course, in this case we can easily do the integrals analytically and, as expected, the results for An

nn̄ and
Bn

nn̄ cancel the coefficient of the delta function in the second line of Eq. (39) and the plus distribution in the third
line, respectively.

B. Numerical Integration

In all of the examples we consider in this paper, the following conditions are met:

• All jets whose shape is not measured have the same algorithm for the target and subtraction. This limits us to
inclusive kT and cone-type algorithms.

• There is no explicit energy dependence of soft gluons in Θ k
A(k). This includes cone and inclusive kT -type

algorithms as well as N-jettiness with any measure Qi in the notation of [14].

• The observables are linear in energy of the gluon for all k (as they must be in the UV and IR limits).

Other cases must be considered case-by-case. However, if these conditions hold true, the integral over k0 can in
general be done analytically, leaving a simple integral over solid angle to be computed numerically,

D0 = −αs

π

�

�i,j�

Ti ·Tj

�
dΩ

4π

ni · nj

(1− k̂ · n̂i)(1− k̂ · n̂j)

� N�

k=1

�
Θ k

A −Θ k
Ã
�
log

k̃kmax(Ω)

Λ
(46)

+

�
1−

N�

k=1

Θ k
A

�
log

Ecut(Ω)

Λ
+

N�

k=1

Θ k
A log

kkmax(Ω)

k̃kmax(Ω)

�
,

where kkmax and k̃kmax are defined by kkmax = k0/σk(k) and k̃kmax = k0/�σk(k) (and so the last factor vanishes when
τ = τ̃). For our particular subtraction we have

k̃kmax(Ω) = Qi (1 + k̂ · nk)
−a/2(1− k̂ · nk)

−1+a/2 . (47)

(TODO) TODO

can we
allow
for obs
that
only
go as
E1 as
θ → 0
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and

Bn
nn̄ =

�
d4k

(2π)4

� 1

0
dτ τDn

nn̄(τ)

=
αsCF

π

�
dk+dk−

k+k−

� 1

0
dτ τδ(τ − k+/Q)

�
θ(k+ < k−)− θ(k+ < k− tan2 R/2)

�

=
αsCF

π

�
dk+dk−

k+k−
k+

Q
θ(k+ < Q)

�
θ(k+ < k−)− θ(k+ < k− tan2 R/2)

�
. (45)

The region in Eq. (44) is shown in Fig. 1. As expected, both contributions are finite and well suited for numerical
evaluation. Of course, in this case we can easily do the integrals analytically and, as expected, the results for An

nn̄ and
Bn

nn̄ cancel the coefficient of the delta function in the second line of Eq. (39) and the plus distribution in the third
line, respectively.

B. Numerical Integration

In all of the examples we consider in this paper, the following conditions are met:

• All jets whose shape is not measured have the same algorithm for the target and subtraction. This limits us to
inclusive kT and cone-type algorithms.

• There is no explicit energy dependence of soft gluons in Θ k
A(k). This includes cone and inclusive kT -type

algorithms as well as N-jettiness with any measure Qi in the notation of [14].

• The observables are linear in energy of the gluon for all k (as they must be in the UV and IR limits).

Other cases must be considered case-by-case. However, if these conditions hold true, the integral over k0 can in
general be done analytically, leaving a simple integral over solid angle to be computed numerically,

D0 = −αs

π

�

�i,j�

Ti ·Tj

�
dΩ

4π

ni · nj

(1− k̂ · n̂i)(1− k̂ · n̂j)

� N�

k=1

�
Θ k

A −Θ k
Ã
�
log

k̃kmax(Ω)

Λ
(46)

+

�
1−

N�

k=1

Θ k
A

�
log

Ecut(Ω)

Λ
+

N�

k=1

Θ k
A log

kkmax(Ω)

k̃kmax(Ω)

�
,

where kkmax and k̃kmax are defined by kkmax = k0/σk(k) and k̃kmax = k0/�σk(k) (and so the last factor vanishes when
σk = �σk). For our particular subtraction we have

k̃kmax(Ω) = Qi (1 + k̂ · nk)
−a/2(1− k̂ · nk)

−1+a/2 . (47)

(TODO) TODO

can we
allow
for obs
that
only
go as
E1 as
θ → 0
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θφ jets of R = Rt from R = Rs jets (cross-check)

• Changing subtraction Rs in mercedes benz (target Rt fixed):

3

The final limit, k0 → ∞, requires a more careful anal-
ysis. As the energy of the gluon goes to infinity, any out-
of-jet cut will veto the emission, which means we only
need to consider radiation in the jets. The difference of
the zeroth moments is

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

�

k/∈meas

�
Θ k

A(k)−Θ k
�A(k)

�
(14)

+
�

k∈meas

�
Θ k

A(k)θ(σk(k) < 1)−Θ k
�A(k)θ(�σk(k) < 1)

�
,

while for the higher moments we find

lim
k0→∞

�
Ink (k)− Ĩnk (k)

�
∝σn

k (k)Θ
l
A(k)θ(σk(k) < 1) (15)

− �σn
k (k)Θ

k
�A(k)θ(�σk(k) < 1) .

In contrast to the soft and collinear limits, where ob-
servable dependence is trivial, the UV divergences are
naively sensitive to both the algorithm and observable
definitions. However, we find that there are two possible
cases for jets: Type I, where the bound on the observable
is more restrictive

Type I : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
θ(σl(k) < 1) ,

(16)

and Type II, where the jet algorithm is more restrictive

Type II : lim
k0→∞

Θ l
A(k)θ(σl(k) < 1) = lim

k0→∞
Θ l

A(k) .

(17)

Here we have defined the limit of the algorithm restric-
tion and the observable in the UV. For jets where an
observable is not measured, the jet algorithm is, by def-
inition, more restrictive, such that these jets are always
Type II.

Clearly, if S and �S do not agree on which jets are Type
I versus Type II, the difference of moments will not go
to 0 and D will be divergent as k0 → ∞. Assuming they
agree, Eq. (14) can be simplified, giving

lim
k0→∞

�
I0(k)− Ĩ0(k)

�
∝

lim
k0→∞

�

p∈Type I

�
θ(σp(k) < 1)− θ(�σp(k) < 1)

�

+ lim
k0→∞

�

p∈Type II

�
Θ p

A(k)−Θ p
�A
(k)

�
, (18)

while Eq. (15) gives

lim
k0→∞

�
Ink∈Type I − Ĩnk∈Type I

�
∝ (19)

lim
k0→∞

�
σn
k (k)θ(σk(k) < 1)− �σn

k (k)θ(�σk(k) < 1)

�
.

Here we have used the fact that, for Type II jets, all
higher moments are 0 [10]. We now see that, as k0 → ∞,
if limk0→∞ σk = limk0→∞ �σk for all Type I jets and

limk0→∞ Θ k
A = limk0→∞ Θ k

�A for all Type II jets, the in-

tegrand vanishes as k0 → ∞.
These results can be used to calculate a desired soft

function numerically, given an analytically known soft
function. Combining Eqs. (7), (8), and (11) gives

S(1)(A,M; {σm}) = �S(1)( �A, �M; {�σm → σm})

+D0
�

i

δ(σi) +
�

i

D1
i

�

j �=i

δ (σj)

�
1

σi

�

+

, (20)

where we have used that the (log σi/σi)+ distribution
must agree [10]. The notation �σm → σm means that, in
�S(1), all �σi are to be replaced by σi for Type I jets, while
for Type II jets,

�
i/∈ �meas δ(�σi) becomes

�
i/∈meas δ(σi).

As long as the subtraction soft function has the same
UV observable dependence as the target for all Type I
jets, as well as the same UV algorithm dependence for
all Type II jets, the Dn

i are finite and can be calculated

numerically. If �S is known analytically, the result for S
can be fully computed at one loop. We will now illus-
trate this procedure with several examples. For a longer
discussion, see [10].
For our subtraction function, we will use the results

from [8]. By combining the pieces of the soft function
calculated therein, we can construct a subtraction for
any soft function at NLO that meets the following two
conditions: observables for Type I jets must be symmet-
ric about the jet axis and behave like an angularity [11]
with a < 1 in the UV, and all Type II jets must be found
using either a cone or inclusive kT -type algorithm, with
the θ-angle relative the jet axis as a measure.
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Numerical Difference

Final Result
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FIG. 1: The coefficient [D0]ij normalized to αs
π Ti ·Tj for

three equally-spaced jets as a function of the subtraction jet
size RS .

Using the notation of [8], our subtraction function is

�S(1) =
�

�i,j�

��
Sincl
ij +

N�

k

Sk
ij

� �m�

l

δ(τ la)

+
�m�

k

Smeas
ij (τka )

�m�

l �=k

δ(τ la)

�
. (21)

Here, �m is set to be the number of Type I jets in S, while



 Andrew Hornig (U.  Washington) SCET 2011

jet shapes of ηφ jets (w/ pTcut & ηcut)

• one jet w/ angularity measured, two beams with |η| > ηcut cut-out

• needs Type I for meas. jet, Type II for beams

Target: Subtraction:

E < Λ

unmeas
|η| > ηcut

unmeas
|η| > ηcut

pT < pcutT

a = 0
meas ηφ jet meas θφ jet

a = 0
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jet shapes of ηφ jets (w/ pTcut & ηcut)

• note: could also do IF we had a=1 (no logs of ηcut)

• question: ok that a=1 weights near beam more than a=0 (θ1 vs θ2)

Target: Subtraction:

E < Λ

pT < pcutT

a = 0
meas ηφ jet meas θφ jet

a = 0

a = 1
meas θφ jet
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jet shapes of ηφ jets (w/ pTcut & ηcut)

• one jet w/ angularity measured, two beams with |η| > ηcut cut-out

• needs Type I for meas. jet, Type II for beams

• beam-beam color-connection contribution as a function of Rjet:

4

the τka are chosen such that limk0→∞(σk− τka ) = 0 for all
Type I jets.

As an initial check of our method, we seek to repro-
duce the known analytical result for D0 of three equally
separated jets, each with energy 125 GeV, found using
a cone algorithm of size R measured as the angle with
respect to the jet and an out-of-jet energy cut of Λ = 50
GeV. Jet thrust (a = 0) will be measured on each jet.
Our subtraction will use size RS , the same out-of-jet en-
ergy cut, and µ = Λ = 50 GeV. As we will show in more
detail in [10], the result reduces to a simple numerical
integral over the solid angle. We see in Fig. 1 that the
known result is reproduced, within numerical error due
to Monte Carlo integration.

In Fig. 2, we show the result of of the soft function for
a single measured jet with a = 0 at a hadron collider.
The jet is defined with an η-φ algorithm, and has energy
125 GeV. For simplicity we will choose the beams to have
energy of 125 GeV as well. To veto other jets, we use a
pT cut of 20 GeV for |η| < 5, while remaining inclusive
for |η| > 5. We show three separate curves for R =
0.4, 0.7, 1.0. The plot is shown as a function of the angle
of the jet with respect to the beams. Note that to remain
inclusive for |η| > 5 requires the use of Type II jets in
the subtraction.

Analytical Subtraction

θjet

NumericalDifference

FinalResult
R

R

incr.

incr.
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FIG. 2: The soft function for an η-φ jet algorithm as a func-

tion of the angle of the measured jet with different R for the

case when the emitters �ij� are the two beam directions.

Using the same kinematic configuration as in the η-φ
example (two fixed back-to-back directions, with a third
direction of varying angle), we show in Fig. 3 the result

for 1-jettiness [9]. Since there is a measurement in each
region, only Type I jets are used in the subtraction.

We have seen that, at one loop, subtractions can be
constructed that allow for new soft functions to be cal-
culated numerically, using previously derived analytical
results. Using only calculations that exist in the litera-
ture, the soft function can be calculated for a number of
phenomenologically relevant observables and algorithms,
including jet shapes found using η-φ algorithms and N -
jettiness, for arbitrary N . In order to calculate the soft
function for most current measurements at hardon collid-
ers, both Type I and Type II jets are required. We should
also note that a similar argument can be used to calculate
jet functions in the presence of algorithms; however, this
is generally less relevant as algorithm corrections tend to
be power suppressed.

θjet

�23�

�12�

�13�

0.2 0.4 0.6 0.8 1.0 1.2 1.4

2

4
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8

10

12

FIG. 3: The coefficient D0
for one-jettiness, shown as a func-

tion of the angle of the measured jet. The labels refer to the

three �ij� emitters, with 1 and 2 referring to the beams and

3 to the jet.
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1-Jettiness from θφ jets w/ Ecut

• 1-jettiness has measurement everywhere:

Target: Subtraction:

E < Λ

meas θφ jet
a = 0

meas θφ jet
a = 0
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1-Jettiness from θφ jets w/ Ecut

• 1,2 = beams; 3 = jet

4

the τka are chosen such that limk0→∞(σk− τka ) = 0 for all
Type I jets.

As an initial check of our method, we seek to repro-
duce the known analytical result for D0 of three equally
separated jets, each with energy 125 GeV, found using
a cone algorithm of size R measured as the angle with
respect to the jet and an out-of-jet energy cut of Λ = 50
GeV. Jet thrust (a = 0) will be measured on each jet.
Our subtraction will use size RS , the same out-of-jet en-
ergy cut, and µ = Λ = 50 GeV. As we will show in more
detail in [10], the result reduces to a simple numerical
integral over the solid angle. We see in Fig. 1 that the
known result is reproduced, within numerical error due
to Monte Carlo integration.

In Fig. 2, we show the result of of the soft function for
a single measured jet with a = 0 at a hadron collider.
The jet is defined with an η-φ algorithm, and has energy
125 GeV. For simplicity we will choose the beams to have
energy of 125 GeV as well. To veto other jets, we use a
pT cut of 20 GeV for |η| < 5, while remaining inclusive
for |η| > 5. We show three separate curves for R =
0.4, 0.7, 1.0. The plot is shown as a function of the angle
of the jet with respect to the beams. Note that to remain
inclusive for |η| > 5 requires the use of Type II jets in
the subtraction.
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FIG. 2: The soft function for an η-φ jet algorithm as a func-

tion of the angle of the measured jet with different R for the

case when the emitters �ij� are the two beam directions.

Using the same kinematic configuration as in the η-φ
example (two fixed back-to-back directions, with a third
direction of varying angle), we show in Fig. 3 the result

for 1-jettiness [9]. Since there is a measurement in each
region, only Type I jets are used in the subtraction.

We have seen that, at one loop, subtractions can be
constructed that allow for new soft functions to be cal-
culated numerically, using previously derived analytical
results. Using only calculations that exist in the litera-
ture, the soft function can be calculated for a number of
phenomenologically relevant observables and algorithms,
including jet shapes found using η-φ algorithms and N -
jettiness, for arbitrary N . In order to calculate the soft
function for most current measurements at hardon collid-
ers, both Type I and Type II jets are required. We should
also note that a similar argument can be used to calculate
jet functions in the presence of algorithms; however, this
is generally less relevant as algorithm corrections tend to
be power suppressed.
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FIG. 3: The coefficient D0
for one-jettiness, shown as a func-

tion of the angle of the measured jet. The labels refer to the

three �ij� emitters, with 1 and 2 referring to the beams and

3 to the jet.
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More examples

• jet shapes that only asymptote to an angularity

• N-jet threshold at pp (subtraction = N-jet threshold at e+e-)

• pTcut everywhere (no large logs of ηcut)

• azimuthally asymmetric observables (e.g., planarity)
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Comparison to the “Hemisphere Decomposition” (MIT) (see Teppo’s talk)

•            easier than              , but not known for a != 0

• Scope: only works for Type I (UPDATE: maybe Type II ??)
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+
∑

m !=i

δ[km − fm(p)]
∏

l !=m

δ(kl)Θm(p)
]
+ (i ↔ j) .

(62)

Note that regions i and j are allowed to overlap with the
other hemisphere. Using Eq. (60), we have

Θi(p) = 1−
∑

m !=i

Θm(p) , (63)

which allows us to replace the regions i and j by full hemi-
spheres analogous to Eq. (46), where the complement of
Θi(p) is now split up between the remaining Θm(p) with
m #= i. Then Eq. (61) can be written as

F ({ki}, p) = Fij,hemi({ki}, p) + Fji,hemi({ki}, p) (64)

+
∑

m !=i

Fij,m({ki}, p) +
∑

m !=j

Fji,m({ki}, p) ,

where the hemisphere contributions are given by

Fij,hemi({ki}, p) = θ(pj − pi) δ[ki− fi(p)]
∏

l !=i

δ(kl) , (65)

and the non-hemisphere contributions by

Fij,m({ki}, p)

= θ(pj − pi)Θm(p)
∏

l !=i,m

δ(kl) (66)

×
{
δ(ki) δ[km − fm(p)]− δ[ki − fi(p)] δ(km)

}
.

As in Sec. III C, all the divergences are contained in
the hemisphere contributions, while the non-hemisphere
contributions are UV and IR finite. The measurement of
either fi or fm in Eq. (66) fixes the magnitude of p, while
the restriction of the emitted gluon to region m forces it
to stay away from the i and j directions. Taken together
this eliminates the UV divergence. The IR-safety of fi
then ensures that in the limit p → 0 the terms in curly
brackets in Eq. (66) cancel each other, which eliminates
the IR divergence. As a result, for a any set of IR-safe ob-
servables fi all UV divergences, and hence the anomalous
dimension, are contained in the hemisphere contributions
determined by Eq. (65). Note that depending on the ob-
servable, these contributions can be more complicated
than in Eq. (54).

E. NLO Calculation for N -Jettiness

We now use the general arguments in the previous sub-
section and apply them to the case of N -jettiness. In

this case the observables are simply the components of
the gluon momentum along the jet directions, while the
regions are determined by the smallest pi. Hence,

fi(p) = pi = 2q̂i · p , Θi(p) =
∏

m !=i

θ(pm − pi) , (67)

which turns Eq. (61) into Eq. (43). From Eqs. (65) and
(66) we get

Fij,hemi({ki}, {pi}) = θ(pj − pi) δ(ki − pi)
∏

m !=i

δ(km) ,

(68)
and

Fij,m({ki}, {pi}) (69)

=
[
δ(ki) δ(km − pm)− δ(ki − pi) δ(km)

]

× θ(pj − pi) θ(pi − pm)
∏

l !=i,m

δ(kl) θ(p
l − pm) .

The calculation of the hemisphere contribution for gen-
eralN is identical to the 1-jettiness case in Sec. III B with
the overall replacement δ(kj) δ(km) →

∏
m !=i δ(km) aris-

ing from Eq. (68). In particular, we can see immediately
that this reproduces the correct NLO counterterm and
soft anomalous dimension in Eqs. (40) and (35). The fi-
nal result for the renormalized hemisphere contribution
is given by Eq. (54),

S(1)
ij,hemi({ki}, µ) =

αs(µ)

4π

[
8√
ŝij µ

L1

(
ki√
ŝij µ

)

−
π2

6
δ(ki)

] ∏

m !=i

δ(km) . (70)

For the non-hemisphere contribution, there are now
several regions m contributing. The calculation for each
region proceeds as in Sec. III C, except that we now have
additional θ(pl−pm) functions in Eq. (69), which separate
region m from the remaining regions l #= i,m. We can
write pm and pl in terms of pi and x = pj/pi,

pm

pi
=

ŝjm
ŝij

+
ŝim
ŝij

x− 2
( ŝjmŝim

ŝ2ij
x
)1/2

cosφ ,

pl

pi
=

ŝjl
ŝij

+
ŝil
ŝij

x− 2
( ŝjlŝil

ŝ2ij
x
)1/2

cos(φ + φlm) . (71)

Here φ is again defined as the angle between &p⊥ and &̂qm⊥,
while φlm are the angles between the remaining &̂ql⊥ and
&̂qm⊥. The result for S(1)

ij,m({ki}, µ) has the same form as
Eq. (58),
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Note that regions i and j are allowed to overlap with the
other hemisphere. Using Eq. (60), we have

Θi(p) = 1−
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which allows us to replace the regions i and j by full hemi-
spheres analogous to Eq. (46), where the complement of
Θi(p) is now split up between the remaining Θm(p) with
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+
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where the hemisphere contributions are given by
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and the non-hemisphere contributions by
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l !=i,m

δ(kl) (66)

×
{
δ(ki) δ[km − fm(p)]− δ[ki − fi(p)] δ(km)

}
.

As in Sec. III C, all the divergences are contained in
the hemisphere contributions, while the non-hemisphere
contributions are UV and IR finite. The measurement of
either fi or fm in Eq. (66) fixes the magnitude of p, while
the restriction of the emitted gluon to region m forces it
to stay away from the i and j directions. Taken together
this eliminates the UV divergence. The IR-safety of fi
then ensures that in the limit p → 0 the terms in curly
brackets in Eq. (66) cancel each other, which eliminates
the IR divergence. As a result, for a any set of IR-safe ob-
servables fi all UV divergences, and hence the anomalous
dimension, are contained in the hemisphere contributions
determined by Eq. (65). Note that depending on the ob-
servable, these contributions can be more complicated
than in Eq. (54).

E. NLO Calculation for N -Jettiness

We now use the general arguments in the previous sub-
section and apply them to the case of N -jettiness. In

this case the observables are simply the components of
the gluon momentum along the jet directions, while the
regions are determined by the smallest pi. Hence,

fi(p) = pi = 2q̂i · p , Θi(p) =
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which turns Eq. (61) into Eq. (43). From Eqs. (65) and
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and
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The calculation of the hemisphere contribution for gen-
eralN is identical to the 1-jettiness case in Sec. III B with
the overall replacement δ(kj) δ(km) →

∏
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ing from Eq. (68). In particular, we can see immediately
that this reproduces the correct NLO counterterm and
soft anomalous dimension in Eqs. (40) and (35). The fi-
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For the non-hemisphere contribution, there are now
several regions m contributing. The calculation for each
region proceeds as in Sec. III C, except that we now have
additional θ(pl−pm) functions in Eq. (69), which separate
region m from the remaining regions l #= i,m. We can
write pm and pl in terms of pi and x = pj/pi,
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ŝil
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while φlm are the angles between the remaining &̂ql⊥ and
&̂qm⊥. The result for S(1)
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Note that regions i and j are allowed to overlap with the
other hemisphere. Using Eq. (60), we have
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which allows us to replace the regions i and j by full hemi-
spheres analogous to Eq. (46), where the complement of
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×
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.

As in Sec. III C, all the divergences are contained in
the hemisphere contributions, while the non-hemisphere
contributions are UV and IR finite. The measurement of
either fi or fm in Eq. (66) fixes the magnitude of p, while
the restriction of the emitted gluon to region m forces it
to stay away from the i and j directions. Taken together
this eliminates the UV divergence. The IR-safety of fi
then ensures that in the limit p → 0 the terms in curly
brackets in Eq. (66) cancel each other, which eliminates
the IR divergence. As a result, for a any set of IR-safe ob-
servables fi all UV divergences, and hence the anomalous
dimension, are contained in the hemisphere contributions
determined by Eq. (65). Note that depending on the ob-
servable, these contributions can be more complicated
than in Eq. (54).
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]
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∏
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The calculation of the hemisphere contribution for gen-
eralN is identical to the 1-jettiness case in Sec. III B with
the overall replacement δ(kj) δ(km) →
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that this reproduces the correct NLO counterterm and
soft anomalous dimension in Eqs. (40) and (35). The fi-
nal result for the renormalized hemisphere contribution
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For the non-hemisphere contribution, there are now
several regions m contributing. The calculation for each
region proceeds as in Sec. III C, except that we now have
additional θ(pl−pm) functions in Eq. (69), which separate
region m from the remaining regions l #= i,m. We can
write pm and pl in terms of pi and x = pj/pi,
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ŝij

x− 2
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Here φ is again defined as the angle between &p⊥ and &̂qm⊥,
while φlm are the angles between the remaining &̂ql⊥ and
&̂qm⊥. The result for S(1)

ij,m({ki}, µ) has the same form as
Eq. (58),
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Note that regions i and j are allowed to overlap with the
other hemisphere. Using Eq. (60), we have

Θi(p) = 1−
∑

m !=i

Θm(p) , (63)

which allows us to replace the regions i and j by full hemi-
spheres analogous to Eq. (46), where the complement of
Θi(p) is now split up between the remaining Θm(p) with
m #= i. Then Eq. (61) can be written as

F ({ki}, p) = Fij,hemi({ki}, p) + Fji,hemi({ki}, p) (64)

+
∑

m !=i

Fij,m({ki}, p) +
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where the hemisphere contributions are given by
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and the non-hemisphere contributions by
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= θ(pj − pi)Θm(p)
∏
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×
{
δ(ki) δ[km − fm(p)]− δ[ki − fi(p)] δ(km)

}
.

As in Sec. III C, all the divergences are contained in
the hemisphere contributions, while the non-hemisphere
contributions are UV and IR finite. The measurement of
either fi or fm in Eq. (66) fixes the magnitude of p, while
the restriction of the emitted gluon to region m forces it
to stay away from the i and j directions. Taken together
this eliminates the UV divergence. The IR-safety of fi
then ensures that in the limit p → 0 the terms in curly
brackets in Eq. (66) cancel each other, which eliminates
the IR divergence. As a result, for a any set of IR-safe ob-
servables fi all UV divergences, and hence the anomalous
dimension, are contained in the hemisphere contributions
determined by Eq. (65). Note that depending on the ob-
servable, these contributions can be more complicated
than in Eq. (54).

E. NLO Calculation for N -Jettiness

We now use the general arguments in the previous sub-
section and apply them to the case of N -jettiness. In

this case the observables are simply the components of
the gluon momentum along the jet directions, while the
regions are determined by the smallest pi. Hence,

fi(p) = pi = 2q̂i · p , Θi(p) =
∏
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θ(pm − pi) , (67)
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∏
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and

Fij,m({ki}, {pi}) (69)

=
[
δ(ki) δ(km − pm)− δ(ki − pi) δ(km)

]

× θ(pj − pi) θ(pi − pm)
∏

l !=i,m

δ(kl) θ(p
l − pm) .

The calculation of the hemisphere contribution for gen-
eralN is identical to the 1-jettiness case in Sec. III B with
the overall replacement δ(kj) δ(km) →

∏
m !=i δ(km) aris-

ing from Eq. (68). In particular, we can see immediately
that this reproduces the correct NLO counterterm and
soft anomalous dimension in Eqs. (40) and (35). The fi-
nal result for the renormalized hemisphere contribution
is given by Eq. (54),
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ŝij µ

)

−
π2

6
δ(ki)

] ∏

m !=i

δ(km) . (70)

For the non-hemisphere contribution, there are now
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contributions are UV and IR finite. The measurement of
either fi or fm in Eq. (66) fixes the magnitude of p, while
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then ensures that in the limit p → 0 the terms in curly
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As in Sec. III C, all the divergences are contained in
the hemisphere contributions, while the non-hemisphere
contributions are UV and IR finite. The measurement of
either fi or fm in Eq. (66) fixes the magnitude of p, while
the restriction of the emitted gluon to region m forces it
to stay away from the i and j directions. Taken together
this eliminates the UV divergence. The IR-safety of fi
then ensures that in the limit p → 0 the terms in curly
brackets in Eq. (66) cancel each other, which eliminates
the IR divergence. As a result, for a any set of IR-safe ob-
servables fi all UV divergences, and hence the anomalous
dimension, are contained in the hemisphere contributions
determined by Eq. (65). Note that depending on the ob-
servable, these contributions can be more complicated
than in Eq. (54).
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the overall replacement δ(kj) δ(km) →
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ing from Eq. (68). In particular, we can see immediately
that this reproduces the correct NLO counterterm and
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ŝij µ

)

−
π2

6
δ(ki)

] ∏

m !=i

δ(km) . (70)

For the non-hemisphere contribution, there are now
several regions m contributing. The calculation for each
region proceeds as in Sec. III C, except that we now have
additional θ(pl−pm) functions in Eq. (69), which separate
region m from the remaining regions l #= i,m. We can
write pm and pl in terms of pi and x = pj/pi,

pm

pi
=
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+
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Here φ is again defined as the angle between &p⊥ and &̂qm⊥,
while φlm are the angles between the remaining &̂ql⊥ and
&̂qm⊥. The result for S(1)

ij,m({ki}, µ) has the same form as
Eq. (58),

Analytical, Divergent:

Numerical, Finite:

No R-Dependence

Smeas
ij (τk)Fij,hemi
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S(1)
ij,m({ki}, µ) =

αs(µ)

π

{
I0
( ŝjm
ŝij

,
ŝim
ŝij

,
{ ŝjl
ŝjm

,
ŝil
ŝim

,φlm

}

l !=i,j,m

)[ 1
µ
L0

(ki
µ

)
δ(km)− δ(ki)

1

µ
L0

(km
µ

)

+ ln
ŝjm
ŝij

δ(ki) δ(km)

]
+ I1

( ŝjm
ŝij

,
ŝim
ŝij

,
{ ŝjl
ŝjm

,
ŝil
ŝim

,φlm

}

l !=i,j,m

)
δ(ki) δ(km)

} ∏

l !=i,m

δ(kl) . (72)

The finite phase-space integrals are now given by

I0(α,β, {αl,βl,φl}) =
1

π

∫ π

−π
dφ

∫
dy

y
θ
(
y −

√
β/α

)
θ
(
1/α− 1− y2 + 2y cosφ

)

×
∏

l

θ
[
αl − 1 + (βl − 1)y2 − 2y

[√
αlβl cos(φ+ φl)− cosφ

]]
,

I1(α,β, {αl,βl,φl}) =
1

π

∫ π

−π
dφ

∫
dy

y
ln(1 + y2 − 2y cosφ

)
θ
(
y −

√
β/α

)
θ
(
1/α− 1− y2 + 2y cosφ

)

×
∏

l

θ
[
αl − 1 + (βl − 1)y2 − 2y

[√
αlβl cos(φ+ φl)− cosφ

]]
. (73)

An algorithm to systematically evaluate them numerically is given in App. A.

IV. CONCLUSIONS

N -jettiness is a global event shape that can be used to
define an exclusive N -jet cross section. We have given a
factorization theorem for the cross section fully differen-
tial in the individual N -jettiness contributions for each
region, T i

N , which correspond to the (transverse) mass
of each jet region. We have computed the correspond-
ing N -jettiness soft function differential in all T i

N at one
loop.
In our calculation we analytically extract the UV di-

vergences by splitting the phase space into hemispheres
depending on which Wilson lines the soft gluon attaches
to. The hemisphere contributions reproduce the anoma-
lous dimension of the soft function as expected from the
consistency of the factorization theorem. The remaining
non-hemisphere contributions, which encode the depen-
dence on the boundaries between the regions, are reduced
to one-dimensional numerical integrals. We show that
this method of calculation applies in general, and can
be used to compute soft functions for other observables,
such as jet algorithms and jet shapes, at one loop.
Our soft-function calculation provides the last missing

ingredient to obtain the exclusive N -jet cross section re-
summed to NNLL for any process where the correspond-
ing SCET hard function at NLO is known from the one-
loop QCD calculation. In many processes it has been ob-
tained explicitly [28, 38–45]. In general, the NLO hard
function is given in terms of the virtual one-loop QCD
diagrams, and there are large ongoing efforts to compute
these for many LHC processes [46–54].
The shape of the jet regions as determined by N -

jettiness depend on the specific distance measure used,
and our results apply to any choice of distance measure.
As we saw in Fig. 2, using a geometric measure, the jet

regions yield jets with circular boundaries, which is a fea-
ture desired experimentally. Hence, it will be interesting
to explore the use of N -jettiness directly as an exclusive
N -jet algorithm in the future.
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Appendix A: Finite Integrals

1. 1-Jettiness

Here we further study the finite phase-space integrals
in Eq. (59) that are required for 1-jettiness or e+e− 3-
jettiness. The indefinite integrals over y can be carried
out explicitly. In particular, for I1 we have

G(y,φ) =

∫
dy

y
ln(1 + y2 − 2y cosφ) = −2Re

[
Li2(ye

iφ)
]
.

(A1)
The remaining integrals over φ must be be carried out
numerically.1

1 One could also think about first integrating over φ, since the
original φ-integral can be done and the limits are linear in cos φ.
This does not lead to any simplification, however, because the
remaining numerical y-integral will then involve arccos[(1+ y2 −
1/α)/(2y)].
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φcut(α,β) =






0 |
√
α−

√
β| ≥ 1 ,

π
√
α+

√
β ≤ 1 ,

arccos
α+ β − 1

2
√
αβ

otherwise .

(A8)

The conditions for α < 1 and the first case for α > 1
reduce to |φ| ≤ φcut. For the second case for α > 1, which
only applies for β ≤ α − 1, we have φcut ≤ |φ| ≤ φmax.
Using the fact that the integrand is symmetric in φ, the
final result for the integrals is given by

I0(α,β) = 2

∫ φcut(α,β)

0

dφ

π
ln
y+(φ,α)√

β/α
+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π
ln
y+(φ,α)

y−(φ,α)
,

I1(α,β) = 2

∫ φcut(α,β)

0

dφ

π

[
G
(
y+(φ,α),φ

)
−G

(√
β/α,φ

)]

+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π

[
G
(
y+(φ,α),φ

)
−G

(
y−(φ,α),φ

)]
. (A9)

2. N -Jettiness

We now turn to the integrals I0,1(α,β, {αl,βl,φl}), defined in Eq. (73), that are needed for general N . The basic
y-integral and the conditions imposed by the primary θ functions involving α and β are as in the previous subsection.
The additional θ functions impose the condition for each l

1− αl + (1− βl) y
2 − 2y

[
cosφ−

√
αlβl cos(φ+ φl)

]
≤ 0 . (A10)

Recall that αl = ŝjl/ŝjm ≥ 0 and βl = ŝil/ŝim ≥ 0. They essentially compare the distance between q̂l and q̂i,j with the

distance between q̂m and q̂i,j . The angle φl = φlm is the angle between &̂ql⊥ and &̂qm⊥. The limits on the y integration
coming from Eq. (A10) will be given in terms of the roots of the polynomial,

y±(φ,αl,βl,φl) =
1

1− βl

{
cosφ−

√
αlβl cos(φ+ φl)±

√[
cosφ−

√
αlβl cos(φ+ φl)

]2 − (1− αl)(1− βl)

}
. (A11)

To analyze the limits on y imposed by Eq. (A10) for each
l, there are three questions to ask:

1. Does the parabola open upwards or downwards?

2. Does it have real roots?

3. What are the signs of the roots?

The condition for the roots to exist is

[
cosφ−

√
αlβl cos(φ+ φl)

]2 ≥ (1− αl)(1− βl) . (A12)

The correct y limits at a given fixed value of φ are then
determined as follows:

1. βl < 1: The parabola opens upwards, so y must be
in between the two roots, y− ≤ y ≤ y+.

(a) αl ≥ 1: Equation (A12) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives an upper limit

y ≤ y+(φ,αl,βl,φl) . (A13)

(b) αl < 1: Equation (A12) is nontrivial, and the
roots have the same sign if they exist. Hence,

y−(φ,αl,βl,φl) ≤ y ≤ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A14)

The y-integral vanishes if the condition on φ
is not satisfied.

2. βl > 1: The parabola opens downwards, so y must
be outside the two roots, y ≤ y− or y ≥ y+.

(a) αl ≤ 1: Equation (A12) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives lower limit

y ≥ y+(φ,αl,βl,φl) . (A15)

(b) αl > 1: Equation (A12) is nontrivial, and the
roots have the same sign if they exist. Hence,

y ≤ y−(φ,αl,βl,φl) or y ≥ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A16)
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To analyze the limits on y imposed by Eq. (A10) for each
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The condition for the roots to exist is

[
cosφ−

√
αlβl cos(φ+ φl)

]2 ≥ (1− αl)(1− βl) . (A12)

The correct y limits at a given fixed value of φ are then
determined as follows:

1. βl < 1: The parabola opens upwards, so y must be
in between the two roots, y− ≤ y ≤ y+.

(a) αl ≥ 1: Equation (A12) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives an upper limit

y ≤ y+(φ,αl,βl,φl) . (A13)

(b) αl < 1: Equation (A12) is nontrivial, and the
roots have the same sign if they exist. Hence,

y−(φ,αl,βl,φl) ≤ y ≤ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A14)

The y-integral vanishes if the condition on φ
is not satisfied.

2. βl > 1: The parabola opens downwards, so y must
be outside the two roots, y ≤ y− or y ≥ y+.

(a) αl ≤ 1: Equation (A12) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives lower limit

y ≥ y+(φ,αl,βl,φl) . (A15)

(b) αl > 1: Equation (A12) is nontrivial, and the
roots have the same sign if they exist. Hence,

y ≤ y−(φ,αl,βl,φl) or y ≥ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A16)

14

φcut(α,β) =






0 |
√
α−

√
β| ≥ 1 ,

π
√
α+

√
β ≤ 1 ,

arccos
α+ β − 1

2
√
αβ

otherwise .

(A8)

The conditions for α < 1 and the first case for α > 1
reduce to |φ| ≤ φcut. For the second case for α > 1, which
only applies for β ≤ α − 1, we have φcut ≤ |φ| ≤ φmax.
Using the fact that the integrand is symmetric in φ, the
final result for the integrals is given by

I0(α,β) = 2

∫ φcut(α,β)

0

dφ

π
ln
y+(φ,α)√

β/α
+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π
ln
y+(φ,α)

y−(φ,α)
,

I1(α,β) = 2

∫ φcut(α,β)

0

dφ

π

[
G
(
y+(φ,α),φ

)
−G

(√
β/α,φ

)]

+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π

[
G
(
y+(φ,α),φ

)
−G

(
y−(φ,α),φ

)]
. (A9)

2. N -Jettiness

We now turn to the integrals I0,1(α,β, {αl,βl,φl}), defined in Eq. (73), that are needed for general N . The basic
y-integral and the conditions imposed by the primary θ functions involving α and β are as in the previous subsection.
The additional θ functions impose the condition for each l

1− αl + (1− βl) y
2 − 2y

[
cosφ−

√
αlβl cos(φ+ φl)

]
≤ 0 . (A10)
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determined as follows:
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y− ≤ 0, and y+ ≥ 0 gives an upper limit

y ≤ y+(φ,αl,βl,φl) . (A13)
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roots have the same sign if they exist. Hence,

y−(φ,αl,βl,φl) ≤ y ≤ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A14)

The y-integral vanishes if the condition on φ
is not satisfied.

2. βl > 1: The parabola opens downwards, so y must
be outside the two roots, y ≤ y− or y ≥ y+.

(a) αl ≤ 1: Equation (A12) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives lower limit

y ≥ y+(φ,αl,βl,φl) . (A15)

(b) αl > 1: Equation (A12) is nontrivial, and the
roots have the same sign if they exist. Hence,

y ≤ y−(φ,αl,βl,φl) or y ≥ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A16)

14

φcut(α,β) =






0 |
√
α−

√
β| ≥ 1 ,

π
√
α+

√
β ≤ 1 ,

arccos
α+ β − 1

2
√
αβ

otherwise .

(A8)

The conditions for α < 1 and the first case for α > 1
reduce to |φ| ≤ φcut. For the second case for α > 1, which
only applies for β ≤ α − 1, we have φcut ≤ |φ| ≤ φmax.
Using the fact that the integrand is symmetric in φ, the
final result for the integrals is given by

I0(α,β) = 2

∫ φcut(α,β)

0

dφ

π
ln
y+(φ,α)√

β/α
+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π
ln
y+(φ,α)

y−(φ,α)
,

I1(α,β) = 2

∫ φcut(α,β)

0

dφ

π

[
G
(
y+(φ,α),φ

)
−G

(√
β/α,φ

)]

+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π

[
G
(
y+(φ,α),φ

)
−G

(
y−(φ,α),φ

)]
. (A9)

2. N -Jettiness
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To analyze the limits on y imposed by Eq. (A10) for each
l, there are three questions to ask:
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2. Does it have real roots?

3. What are the signs of the roots?

The condition for the roots to exist is
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1. βl < 1: The parabola opens upwards, so y must be
in between the two roots, y− ≤ y ≤ y+.
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We now turn to the integrals I0,1(α,β, {αl,βl,φl}), defined in Eq. (73), that are needed for general N . The basic
y-integral and the conditions imposed by the primary θ functions involving α and β are as in the previous subsection.
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To analyze the limits on y imposed by Eq. (A10) for each
l, there are three questions to ask:

1. Does the parabola open upwards or downwards?

2. Does it have real roots?

3. What are the signs of the roots?

The condition for the roots to exist is

[
cosφ−

√
αlβl cos(φ+ φl)

]2 ≥ (1− αl)(1− βl) . (A12)

The correct y limits at a given fixed value of φ are then
determined as follows:

1. βl < 1: The parabola opens upwards, so y must be
in between the two roots, y− ≤ y ≤ y+.

(a) αl ≥ 1: Equation (A12) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives an upper limit

y ≤ y+(φ,αl,βl,φl) . (A13)

(b) αl < 1: Equation (A12) is nontrivial, and the
roots have the same sign if they exist. Hence,

y−(φ,αl,βl,φl) ≤ y ≤ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A14)

The y-integral vanishes if the condition on φ
is not satisfied.

2. βl > 1: The parabola opens downwards, so y must
be outside the two roots, y ≤ y− or y ≥ y+.

(a) αl ≤ 1: Equation (A12) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives lower limit

y ≥ y+(φ,αl,βl,φl) . (A15)

(b) αl > 1: Equation (A12) is nontrivial, and the
roots have the same sign if they exist. Hence,

y ≤ y−(φ,αl,βl,φl) or y ≥ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A16)
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There are no constraints on y if the condition
on φ is not satisfied.

3. βl = 1: There is no parabola.

(a) αl ≤ 1: The limits are

y ≥
1− αl

2 cosφ− 2
√
αl cos(φ+ φl)

,

cosφ ≥
√
αl cos(φ+ φl) , (A17)

and the y-integral vanishes if the condition on
φ is not satisfied.

(b) αl > 1: The limits are

y ≤
αl − 1

2
√
αl cos(φ + φl)− 2 cosφ

,

cosφ ≤
√
αl cos(φ+ φl) . (A18)

There are no constraints on y if the condition
on φ is not satisfied.

In principle one can now combine all limits and deter-
mine all possible φ-intervals in which a particular set of
lower and upper y-limits applies, as we did in Eq. (A9).
However, although this is straightforward it quickly be-
comes very cumbersome. Alternatively, it is easy to de-
vise an algorithm to obtain the numerical value of the

integrand for a given value of φ in the numerical inte-
gration over φ. One starts with the y-limits in Eq. (A3),
call them ymin and ymax. Next, one loops over all l and
determines the limits imposed by each l as above. If one
encounters a stronger lower or upper limit, ymin and/or
ymax are updated to the new stronger limit. If one en-
counters a necessary condition on φ that is violated, the
integrand vanishes and one can stop. Case 2(b) requires
special attention. If it is encountered, the y interval is
split in two if necessary and one continues by maintaining
two (or more) mutually exclusive y-intervals each hav-
ing its own lower and upper limit. Newly encountered
stronger limits are then applied to each interval. An in-
terval is eliminated whenever its lower limit exceeds its
upper limit. If the last existing interval is eliminated the
integrand vanishes. This procedure results in a number
of mutually exclusive y-intervals, corresponding to inde-
pendent regions in the y integration. The actual value of
the integrand for the given φ is then

∑

I

ln
yImax

yImin

,
∑

I

[
G(yImax,φ)−G(yImin,φ)

]
, (A19)

for I0 and I1, respectively, where the sum runs over all
intervals and yImin,max are the lower and upper limits of
the Ith interval.
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ing its own lower and upper limit. Newly encountered
stronger limits are then applied to each interval. An in-
terval is eliminated whenever its lower limit exceeds its
upper limit. If the last existing interval is eliminated the
integrand vanishes. This procedure results in a number
of mutually exclusive y-intervals, corresponding to inde-
pendent regions in the y integration. The actual value of
the integrand for the given φ is then

∑

I

ln
yImax

yImin

,
∑

I

[
G(yImax,φ)−G(yImin,φ)

]
, (A19)

for I0 and I1, respectively, where the sum runs over all
intervals and yImin,max are the lower and upper limits of
the Ith interval.
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There are no constraints on y if the condition
on φ is not satisfied.

3. βl = 1: There is no parabola.

(a) αl ≤ 1: The limits are

y ≥
1− αl

2 cosφ− 2
√
αl cos(φ+ φl)

,

cosφ ≥
√
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φ is not satisfied.
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There are no constraints on y if the condition
on φ is not satisfied.
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φcut(α,β) =






0 |
√
α−

√
β| ≥ 1 ,

π
√
α+

√
β ≤ 1 ,

arccos
α+ β − 1

2
√
αβ

otherwise .

(A8)

The conditions for α < 1 and the first case for α > 1
reduce to |φ| ≤ φcut. For the second case for α > 1, which
only applies for β ≤ α − 1, we have φcut ≤ |φ| ≤ φmax.
Using the fact that the integrand is symmetric in φ, the
final result for the integrals is given by

I0(α,β) = 2

∫ φcut(α,β)

0

dφ

π
ln
y+(φ,α)√

β/α
+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π
ln
y+(φ,α)

y−(φ,α)
,

I1(α,β) = 2

∫ φcut(α,β)

0

dφ

π

[
G
(
y+(φ,α),φ

)
−G

(√
β/α,φ

)]

+ 2θ(α− β − 1)

∫ φmax(α)

φcut(α,β)

dφ

π

[
G
(
y+(φ,α),φ

)
−G

(
y−(φ,α),φ

)]
. (A9)

2. N -Jettiness

We now turn to the integrals I0,1(α,β, {αl,βl,φl}), defined in Eq. (73), that are needed for general N . The basic
y-integral and the conditions imposed by the primary θ functions involving α and β are as in the previous subsection.
The additional θ functions impose the condition for each l

1− αl + (1− βl) y
2 − 2y

[
cosφ−

√
αlβl cos(φ+ φl)

]
≤ 0 . (A10)

Recall that αl = ŝjl/ŝjm ≥ 0 and βl = ŝil/ŝim ≥ 0. They essentially compare the distance between q̂l and q̂i,j with the

distance between q̂m and q̂i,j . The angle φl = φlm is the angle between &̂ql⊥ and &̂qm⊥. The limits on the y integration
coming from Eq. (A10) will be given in terms of the roots of the polynomial,

y±(φ,αl,βl,φl) =
1

1− βl

{
cosφ−

√
αlβl cos(φ+ φl)±

√[
cosφ−

√
αlβl cos(φ+ φl)

]2 − (1− αl)(1− βl)

}
. (A11)

To analyze the limits on y imposed by Eq. (A10) for each
l, there are three questions to ask:

1. Does the parabola open upwards or downwards?

2. Does it have real roots?

3. What are the signs of the roots?

The condition for the roots to exist is

[
cosφ−

√
αlβl cos(φ+ φl)

]2 ≥ (1− αl)(1− βl) . (A12)

The correct y limits at a given fixed value of φ are then
determined as follows:

1. βl < 1: The parabola opens upwards, so y must be
in between the two roots, y− ≤ y ≤ y+.

(a) αl ≥ 1: Equation (A12) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives an upper limit

y ≤ y+(φ,αl,βl,φl) . (A13)

(b) αl < 1: Equation (A12) is nontrivial, and the
roots have the same sign if they exist. Hence,

y−(φ,αl,βl,φl) ≤ y ≤ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A14)

The y-integral vanishes if the condition on φ
is not satisfied.

2. βl > 1: The parabola opens downwards, so y must
be outside the two roots, y ≤ y− or y ≥ y+.

(a) αl ≤ 1: Equation (A12) is always satisfied,
y− ≤ 0, and y+ ≥ 0 gives lower limit

y ≥ y+(φ,αl,βl,φl) . (A15)

(b) αl > 1: Equation (A12) is nontrivial, and the
roots have the same sign if they exist. Hence,

y ≤ y−(φ,αl,βl,φl) or y ≥ y+(φ,αl,βl,φl) ,

cosφ−
√
αlβl cos(φ+ φl) ≥

√
(1− αl)(1− βl) . (A16)

Quadratic Eq. in y:Unbounded dy/y
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Conclusions

• subtractions can easily be used to get LHC-ready soft functions

• ingredients for all azimuthally symmetric obs (a<1) with Type I 
algorithms

• need for future:

• a >= 1

•           ,       for azimuthally-asymmetric classes

• 2-loop anom dims of jet/soft fncs for a != 0 for NNLL

• understanding resummation for Type II

Sk
ijSij(τ

k)


