Aug 23, 2021

Feature Recognition and labelling for Photogrammetry Calibration of the Super-Kamiokande Detector

Tapendra BC

Email: bc-t@webmail.uwinnipeg.ca

Acknowdgements: Supervisor: Blair Jamieson Ali Ajmi

Introduction

Neutrino

- Subatomic particle, similar to an electron (but no electrical charge).
- One of the most abundant particles in the universe.
- Incredibly difficult to detect.

Standard Model of Elementary Particles

Fig: standard model[1]

How is neutrino detected?

Super Kamiokande (Super-K)

Fig: Model of Super-Kamiokande detector[2]

~11,000 PMTS

PMT[3]

Bolts for mounting PMT to wall.

Cherenkov radiation

 Produced when charged particles move faster than speed of light in a medium(water).[2]

Photographing detector wall with Underwater drone

>15000 img

239.jpg

379.jpg

Need for automation?

• Over 15000 images.

Problem statement:

Feature detection:

• Want to identify pixel locations of bolts in an image.

Feature labelling:

• Identify each PMT in all images and assign a unique ID(identity/label) to each PMT.

Ultimately: Find the geometry of entire detector / location of PMTs in the detector wall.

Method

1. Blob detection:

• To find bolts.

Blob: In computer vision, blob detection methods are aimed at detecting regions in a digital image that differ in properties, such as brightness or color, compared to surrounding regions.

2. Hough-Ellipse detection:

- Find ellipses in some range of size(minor axis) in the image.
- (Manually set First, but were able to automate.)

Fig: cropped image after ellipse detection

3. Remove false PMTs:

- Remove bolts that are not in 15-degree angle pattern from PMT center.
- Remove intersecting ellipse that has fewer number of bolts.

Gallery of Success

Barrel Far 010

Barrel Far 020

Barrel Far 100

Barrel Far 60

Feature labelling

	.913	8		9100		9060		.9019	89	976	• 89	933	8889		0045	8 7	10	15 964	9 13	862	8 11	<mark>,</mark> /60	V 09									240
9	9249 9249	9177 14	9139 917	9100 9140 78 216	9101	9102	9061 9103:	9062	9020 3 90	976 8977 921 89 9022 1	978	8934 8935	8890 889	0 4 91 4	8845 8846 8847	8800 8801			012	861	<u>,</u> 810	759	708	657	<mark>.</mark> 606	<mark>.</mark> 555	504	453	402	,351	,300	249
1810304	9249	. 9250 ⁹	²¹⁵ 9												5010	8802		14 . 963				759	707	2656	605	554	503	<mark>,</mark> 452	4 01	350	299	
	1071	1020	. 969		1900	816				· · · · ·		510			357		_1 0	013 962 012 961	211	050	808	.757	706	655	30001 604	5 53	502	4 51	4 00	, 349	298	247
	1070	1 019	<mark>.968</mark>	. 917	866	8 15	.764	713	662	611	2 560	. 509	458	4 07	356	305	1 0	012 - 961	9 10	4 59	200			AN		and the		450	300	34.9	297	246
	1069	. 1018	. 967	. 916	865	B 14	763	3 12	661	(10)	(J)59	5 08	457	4 06	3 55	304	1 (011 _ 960) _909	858	807	756	705	354	603		501	450	666		- 291	
	1068	1017						14	· · · · · · · · · · · · · · · · · · ·	Sec. marks						,3 03	1	010 _959	9 , 908	857	806	755		653	1	551	590	449	398	_347	296	245
	1068		-		00	012	761	710	659	608	557	506	455	404	35.2	202	1	100995	8 ,90	7 850	5 8 09	5 754	. ,703	652	601	550	499	448	3 97	346	-295	- 244
										806								9 ^و مر 1008 م														
	1066	. 1015	964	.913	8 62	8 11	.760	709	658	6 07	556	505	4 54	4 03	3 52	,301		مر 1008م										4 46				
	. 1065	1 01	4 963	9,12	8 61	810	.759	708	657	606	555	5 04	<mark>4</mark> 53	402	" 351	, 300									5 98			445				
	106	4 . 10'	13 .96:	2 911	8 60	<mark>.</mark> 809	7 58	.707	6 56	20001	5 54	503	4 52	4 01	" 350	299		, 1006 ,														
	. 1 01	i3 •1 9	12 90	1 910	0 <mark>8</mark> 59	<mark>.</mark> 808	. 757	.706	6 55	30001 604	553	502	4 51	400	3 49	298	1056	1 005	,954	903	β52 β		50 69	9 648	3 597 UKB2	546 545	¥95	4 44	393	3 42	291	240
																	105	5 •1004	953	902	as 1	ρ00 -	49 . 05	¹⁰ ¹⁰ 4	, <mark>\$</mark> 96	P 45	494	443	392	341	290	

Image Labelling approach.

- Use PMT coordinate from design.
- Perform R³ -> R² transformation.

(Using camera's transformation matrix.)

Knowns and unknowns

- Orientation is can be calculated from drone data(using yaw, pitch, roll).
- Drone position is unknown. Only Z coordinate known.
- **t**=-R***p** (**t**= translation vector, **p**=drone position)

ID	Х	у	Z	
00018-00	1690	2	- 569	
00019-00	1690	2	-491	
00020-00	1690	2	- 424	
00021-00	1690	2	-357	
00022-00	1690	2	-279	
00023-00	1690	2	-212	
00024-00	1690	2	-145	
00025-00	1690	2	-67	

Fig: location of all PMTs in detector wall (from design)

Pattern matching

Fig. Hough-ellipses

Fig. Perspective projected points

Fig. Cropped img

50

398

397

396

395

{A} = set of coordinates of all hough-ellipses. {B_j} = set of all reprojected points for specific camera position(j). d_{ij} = min distance between ith element of A and members of set B_j.

 $d_j = \Sigma d_{ij}$ (Find min d among all j)

650

Results:	238	865 814 763	712 661	610 559 508 457 ;	214 262 e11 86	0 809 758	707 656	.605 .554 . .30001	503 4 52		247
	066 915	.864 813 762	711 660	609 558 507 456		808 757	706 655	604 553	p02 ,+31		
2°44 457 906 855 804 753 702 851 644 497	.965 .914	863 812 761	710 659	608 557 506 455		a 807 .756	705 654	603 5 52	5 01 4 50	399 348	297 246
1007 956 905 854 803 802 1006 955 904 853 802 751 700 649 598 547 496	1015 964 913	.862 .811 (.760	709 658	507 555 305 A54	050 008 85	7 806 755	704 653	\$02 551	50.0 449	4 398 - 2 47	-290 -2+3
	062 912			(606 5554 9041 453) (_1009_958 907 B	6 8 05 (. 75	703 652		499 (0448	; 397 ; 346	-295 -244
1005 954 903 901 JKB2 1004 953 902 851 800 749 698 647 596 545 494 KB2	1012 962 911	860 809 758	707 656	20001 005 054 503 +452	ا ل 906 57 و _{م 1008 1}	55 ,8 04 , 75	3 702 \$51	600 5 49	498 447	3 96 3 45	294 243
,1003-952 901 850 799 748 697 645 595 644 4934	1012 961 910	859 808 757	7 706 655	30001 604 553 502 451	ه 905 و956 J007 و	54 , 803 , 78	2 701 650	5 99 548	4 97 4 46	3 95 3 44	293 242
1002-951 900 849 798 747 596 645 594 543 492				£03 £52 £01 ¥50	له ⁹⁰⁴ و 55 ⁹ و 006 لو	353 , 802 , 7	1 ,700 ,649	98 5 47	496 445	394 343	292 241
1052 -1001 -950 -899 -848 -797 -746 -695 -644 -693 -642 -491		957 806 75	5 704 653	602 551 500 449	, 005 و54 و001	β52 β 01 , 7	50 ,6 99 ,6 41	8 5 97 546	4 95 4 44	3 93 3 42	291 240
9198 9100 9060 9019 8976 91 30 7 5 9139 9101 9051 9019 8977 7)∕⊈Q •51 , 900 ↓	849 7 98 747	696 645	594 543 492 441 ³¹	080 938 £87 £	36 7 85 7 3	40 608 64 4 683 632	7 896 845 2 581 530	479 428	, 120 y 1000	
9198 9100 9060 9019 8976 91235 9139 9101 9061 9020 8977 2 9249 9214 9178 9140 9102 9062 9020 8977 9249 9215 9178 9141 9103 9063 9021 8 9249 9250 9215 9216 9179 9180 9142 9104 9063 9022	1001 9 50 899 4	848 . 797 .746	695 644	593 542 491 440 3	256 988 937 986 8	35 784 73	3 682 631	580 529	478 4 27	3 76 3 25	,274 , 23
1071 1020 969 918 867 816 765 714 663 612	۽ 1000 و949 و	β47 7 96 745	694 643	592 541 4 90 439 3		783 73	2 681 630) <u>2</u> /9 220			
1070 1019 968 917 866 815 764 713 662 611	999 948 897 4	846 795 744	693 642	(591 (340 .489 .438 .3	005 994 B	33 782 7	1 680 62	9 578 52	47.6 42	5 _374 _323	-212 - 4
1069 1018 967 916 865 814 763 312 861 619	998 947 B96	845 J94 J43	(592 (C4)	(. 488 .437 (.2	9 _985 _934 _883 #	32 781 (7	10 5 79 5 2	8 577 52	4 75 4 2	4 .373 -322	- 271 - 22
1068 1017 966 915 864 813 769 717 3660 609	997 946 ⁸⁹⁵	B44 793 742	59) <u>5</u> 40	689 638 487 436 3	_984 _933 _882 d	331 ,780 ,7	29 678 62	7 576 52	5 #74 #2	3 372 321	-270 -21
1067 1016 965 914 863 812 761 710 859 808	996 945 894	843 792 741	esa oea	\$88 \$37 \$486 \$435 3	⁸ ,983 ,932 ,881 ,	830 , 779 , 7	28 677 62	26 575 52	4 473 42	2 371 320	269 21
1066 1015 964 913 862 811 760 709 858 607	995 944 893	842 791 740	689 638	587 536 \$485 \$434 38	982 931 880	829 ,778 .	27 676 62	25 574 52	3 472 42	1 370 319	268 21
1065 1014 963 912 Bb1 B10 759 708 557 606	994 943 892	841 790 739	4 88 هم. 537 هم.	83 \$86 \$35 \$84 \$33 \$38		,828 , 777 ,	726 675 6	24 5 73 52	2 #71 #20	D 369 318	267 216
20001 1064 1013 962 11 860 809 758 707 556 605 1044 1064 1013 962 911 1	4 993 942 891	840 7 89 7 38	. 687636	\$ ⁸⁵ \$34 \$83 \$32 \$8	11031 980 929 878	8 27 7 76	725 6 74 5	23 \$72 \$2	1 270 2419	368 317	266 215
1063 1912 961 910 859 808 757 706 555 604 104	.3 992 941 890	839 788 737	7 ,686 ,63 5	\$84 \$33 \$82 \$31 \$80	1030 9 79 9 28 8 77	826 7 75	7 24 6 73 6	22 \$71 \$2	0 469 418	³⁶⁷ 11 ³¹⁶	265 214
	9 91 9 40 8 89	9 838 787 736	• <mark>.</mark> 685 .634	583	LANDER DE CALLER DE LA COMPANY	1 1	1 1 1				

Future work:

- Investigate the failure cases.
- Try to further constrain the camera location.
- Label the ring of the detector to reconstruct part of the detector.
- Label the whole detector.
- Perform pattern matching by scanning not only the camera position but also the camera orientation.

References

[1] "Standard model of elementary particles" by chriswalf, is licenced under <u>CC-BY-SA-3.0</u>

[2] <u>"スーパーカミオカンデタンク内公開 Super-Kamiokande insidetank"</u> by nvslive is licensed under <u>CC BY-NC</u> <u>2.0</u>

[3] "Photomultiplier Tube (PMT) at Kamioka SkyDome" by kawanet is licensed under CC BY 2.0

Backup slides

3. Hough-Ellipse detection:

- Find ellipses in some range of size(minor axis) in the image.
- (Manually set First, but were able to automate.)

4. Remove false PMTs:

- Remove bolts that are not in 15-degree angle pattern from PMT center.
- Remove intersecting ellipse that has fewer number of bolts.

• To get the estimate of min and max radius of PMTs in the image.

Radius of Hough-Circle vs Number of PMTs found

Overview of photogrammetry analysis

Feature(bolt)

Tool to visualize camera position and image of detector

Bounding the Unknowns

- Intended to point camera radially outwards.
 (Not true. So far noticed offset of up to 17⁰).
- Can estimate bound for radial position(cylindrical coordinate) using size of PMTs in image.
- Can estimate the angle made by r as Camera dir+-range(20 for now).
- Can estimate Z as z from drone data+-offset.

Fig: Detector. Showing radial direction, camera position, and direction camera is pointing.

18

Example of a Correctly labelled image

1017	966	<mark>.</mark> 915	864	813	/62					in in the second se			25.2	, 302	2 51
1016	9 65	9 14	8 63	<mark>8</mark> 12	. 761	710	659	608	557	506	4 55	4 04	<mark>,</mark> 353	1002	
	054	. 913	. 862	8 11	760	709	6 58	<mark>.</mark> 607	556	5 05	4 54	4 03	352	,301	250
1 015	9 64	¥13							E É É	504	4 53	4 02	" 351	_300	2 49
1014	. 963	. 912	861	8 10	. 759	708		606 0001	555	504					
1 013	_ 962	<u>911</u>	860	809	.758	707		1 3	54	503	4 52	401	_ 350	_299	_ 248
		9 10	859	808	.757	. 79ê	65 <u>5</u>	0001 604	553	502	45.1	490	. 349	-298	- 247
_1012							·····				45.0				
011 لو	. 960	9 09	858	, 807	756	705	54	<mark>603</mark> ,	552	501	45.0 -	3 99	3 48	-297	- 2 46
_ 1 010	959	908	857	8 06	755	704	653	602	551	500	4 49	398	347	296	-245
100	9 , 958	3 <u>9</u> 07	856	, 805	7 54	703	652	601	550	499	448	397	3 46	295	244
			055	904	753	702	651	600	540	498	147	396	245		
100	08 95	7 90	6 <mark>,</mark> 855	, 804	. 753	702	PPPPPPPPPPPPP	<mark>.</mark> 600				390	345	294	243
1 0	007- 9	56 🔑	05 / 8 5	4 8 03	3 <mark>,</mark> 752	701	<mark>.6</mark> 50	. 599	5 48	497	446	395	344	293	242
ام	006 🏓	955 💡	04 85	53 . 8 0	02 , 751	700	<mark>.</mark> 649	. 598	5 47	4 96	445	394	343	292	241

19

Narrowing search volume

• b=p1=density of calibrated water(salt)/density of hk-water.

Can be easily derived assuming that the pressure sensor Is reading the pressure correctly.

Try to relate offset of brightest point from the center to predict if the camera was pointing at angle less than or more than radially outward direction.

The brightest spot should have been in the center if the camera was pointing radially outward.

Fig: Finding brightest spot in the image.

Z-Coordinate correction

See the pattern?

- Now match the pattern.
- Best match pattern is correct label(actual camera position).

10	7 9	66	915	864	813	5 7	62	711	660	609	558	,007	400	100	2			~	X	1	×	1			-		
10	16 9	65	914	863	812	7	61	710	659	<mark>.</mark> 608	557	506	455	404	.353	302	251										
1 0	15 9	64	913	862	811	.7	60	709	<mark>.</mark> 658	. 607	556	<mark>.</mark> 505	<mark>.</mark> 454	<mark>.</mark> 403	. 352	.301	250										
1 0	14 🧕	63	<mark>.</mark> 912	861	810	, 7	759	708	<mark>.</mark> 657	606	555	504	<mark>.</mark> 453	<mark>.</mark> 402	351	. 300	249										
.10	13 ♀	962	<mark>.</mark> 911	860	<mark>.</mark> 809		758	707	.656	605	554	503	4 52	<mark>.</mark> 401	350	299	248						0	0.0		O	No. 1
<mark>.</mark> 1(12 -	961	<mark>.</mark> 910	859	808	3	757	706	655	<mark>.</mark> 604	553	502	<mark>.</mark> 451	4 00	349	298	247) ())		0		See. No. N
1	011	960	<mark>.</mark> 909	858	<mark>.</mark> 807	7	756	705	<mark>.</mark> 654	<mark>.</mark> 603	552	501	450	399	348	297	246								0		1
).	010	959	908	857	80	6	755	704	653	<mark>.</mark> 602	551	500	449	398	.347	296	245										
	1009	958	907	856	.80)5	754	703	652	601	550	499	448	- ³⁹ Rad	d+ <mark>46</mark> th	n+ 5	Z+										
9	1008	957	.90	6 <mark>.</mark> 85	5 _8(04	<mark>.</mark> 753	702	<mark>.</mark> 651	<mark>.</mark> 600	549	498	. 447	Yav 396 Pih	7 45		Yaw+ Pih+										
8	<mark>.</mark> 1007	7 956	6 <mark>.</mark> 90	5 85	64 <mark>.</mark> 8	303	.752	<mark>.</mark> 701	650	599	548	4 97	446	.395Rol	- 4 <<		Rol+						(a)				
57	1 00	6 95	i5 <mark>.</mark> 9	04 .8	53 😽	802	751	_700	649	<mark>.</mark> 598	547	496	<mark>.</mark> 445	394 Rad		- 292	Z-										

Introduction to camera (simply R³ -> R² transformation)

