Feature Recognition and

 labelling for Photogrammetry Calibration of the Super-Kamiokande DetectorTapendra BC
Email: bc-t@webmail.uwinnipeg.ca

Acknowdgements:
Supervisor: Blair Jamieson
Ali Ajmi

Introduction

Neutrino

- Subatomic particle, similar to an electron (but no electrical charge).
- One of the most abundant particles in the universe.
- Incredibly difficult to detect.

Standard Model of Elementary Particles

Fig: standard model[1]
How is neutrino detected?

Super Kamiokande (Super-K)

Fig: Model of Super-Kamiokande detector[2]
~11,000 PMTS

PMT[3]

3

Bolts for mounting PMT to wall.

4

Cherenkov radiation

- Produced when charged particles move faster than speed of light in a medium(water).[2]

Photographing detector wall with Underwater drone

$>15000 \mathrm{img}$

239.jpg

Need for automation?

- Over 15000 images.

Problem statement:

Feature detection:

- Want to identify pixel locations of bolts in an image.

Feature labelling:

- Identify each PMT in all images and assign a unique ID(identity/label) to each PMT.

Ultimately: Find the geometry of entire detector / location of PMTs in the detector wall.

Method

1. Blob detection:

- To find bolts.

Blob: In computer vision, blob detection methods are aimed at detecting regions in a digital image that differ in properties, such as brightness or color, compared to surrounding regions.

2. Hough-Ellipse detection:

- Find ellipses in some range of size(minor axis) in the image.
- (Manually set First, but were able to automate.)

Fig: cropped image after ellipse detection

3. Remove false PMTs:

- Remove bolts that are not in 15-degree angle pattern from PMT center.
- Remove intersecting ellipse that has fewer number of bolts.

Gallery of Success

Barrel Far 010
Barrel Far 100

Feature labelling

Image Labelling approach.

- Use PMT coordinate from design.
- Perform $R^{3}->R^{2}$ transformation. (Using camera's transformation matrix.)

ID	X	y	Z
$00018-00$	1690	2	-569
$00019-00$	1690	2	-491
$00020-00$	1690	2	-424
$00021-00$	1690	2	-357
$00022-00$	1690	2	-279
$00023-00$	1690	2	-212
$00024-00$	1690	2	-145
$00025-00$	1690	2	-67

Fig: Iocation of all PMTs in detector wall (from design)

Knowns and unknowns

- Orientation is can be calculated from drone data(using yaw, pitch, roll).
- Drone position is unknown. Only Z coordinate known.
- $\mathbf{t}=-R^{*} \mathbf{p}$ ($\mathbf{t}=$ translation vector, $\mathbf{p}=$ drone position $)$

Bounding solid.
Camera somewhere here.

Pattern matching

Fig. Hough-ellipses

Fig. Perspective projected points

Fig. Cropped img

Reprojection error
$\{A\}=$ set of coordinates of all hough-ellipses.
$\left\{B_{j}\right\}=$ set of all reprojected points for specific camera position(j).
$\mathrm{d}_{\mathrm{ij}}=$ min distance between $\mathrm{i}^{\text {th }}$ element of A and members of set B_{j}. $\mathrm{d}_{\mathrm{j}}=\sum \mathrm{d}_{\mathrm{ij}} \quad$ (Find min d among all j)

Results:
244
$\begin{array}{lllllllllll}1007 & 956 & 905 & 854 & 803 & 752 & 701 & 1650 & 599 & 548 & 497\end{array}$

1005	954	903	852	801	750	699	$\boxed{548}$	597	546	A95		$-1004-953$	902	851	800	749	598	647	$(596$	(545)
:---	:---	:---	:---	:---	:---	:---	:---	:---												

 $\begin{array}{llllllllll}-1002-951 & 900 & 849 & 798 & 747 & 696 & 845 & (594 & 543 & 892\end{array}$ | 2 | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -1001 | -950 | 899 | .848 | .797 | 746 | 595 | 644 | 593 | 842 |

244

248

238
$\begin{array}{lllllll}266 & 215 & 864 & 813 & 862 & 711 & \mathbf{8} 60\end{array}$

 \begin{tabular}{lllllllllll}
1015 \& 964 \& 213 \& 862 \& 863 \& 811 \& 860 \& 809 \& 858 \& 807 \& 856

\hline

1014 \& 263 \& 212 \& 861 \& 810 \& 759 \& $(008$ \& $55)$ \& $(506$ \& 5554 \& (504)

\hline
\end{tabular} $1013 \quad .962 \quad 911 \quad 860 \quad 809 \quad 758 \quad 707 \quad 856$ 805 ©54 503 (.452 $\begin{array}{lllllllllllll}1012 & 961 & 910 & 859 & 808 & 757 & 706 & 655 & 804 & .853 & .502 & 8454\end{array}$

.3! 98
256

$$
\begin{array}{llllllllll}
985 & 934 & 883 & 832 & 781 & 730 & 579 & (628 & 577 & (6) 6 \\
\hline
\end{array}
$$

$$
\begin{array}{llllllllllll}
\hline 984 & -933 & 882 & 831 & 780 & 729 & 878 & 82
\end{array}
$$

$$
\begin{array}{lllllllllllllllllllll}
\hline 983 & .932 & 881 & 830 & 779 & 728 & 877 & 526 & 575 & 524 & 8773 & 442 & 371 & -320 & -269
\end{array}
$$

$$
\begin{array}{lllllllllllllll}
\hline 982 & 931 & 880 & 829 & 778 & 727 & 576 & .525 & 574 & .523 & 872 & 8421 & 370 & 319 & 268
\end{array}
$$

 $\begin{array}{lllllllllllllll}996 & 945 & 894 & 843 & 792 & 741 & \text { 590 } & \text { 539 } & \text { 588. } & 537 & 486 & 435 & 3\end{array}$

Future work:

- Investigate the failure cases.
- Try to further constrain the camera location.
- Label the ring of the detector to reconstruct part of the detector.
- Label the whole detector.
- Perform pattern matching by scanning not only the camera position but also the camera orientation.

References

［1］＂Standard model of elementary particles＂by chriswalf，is licenced under CC－BY－SA－3．0
［2］＂スーパーカミオカンデタンク内公開 Super－Kamiokande insidetank＂by nvslive is licensed under CC BY－NC
［3］＂Photomultiplier Tube（PMT）at Kamioka SkyDome＂by kawanet is licensed under CC BY 2.0

Backup slides

3. Hough-Ellipse detection:

- Find ellipses in some range of size(minor axis) in the image.
- (Manually set First, but were able to automate.)

4. Remove false PMTs:

- Remove bolts that are not in 15-degree angle pattern from PMT center.
- Remove intersecting ellipse that has fewer number of bolts.

2. Automating size of ellipse estimation (Hough-Circle detection):

- To get the estimate of min and max radius of PMTs in the image.

Radius of Hough-Circle vs Number of PMTs found

Overview of photogrammetry analysis

Bounding the Unknowns

- Intended to point camera radially outwards. (Not true. So far noticed offset of up to 17^{0}).
- Can estimate bound for radial position(cylindrical coordinate) using size of PMTs in image.
- Can estimate the angle made by r as Camera dir+-range(20 for now).
- Can estimate Z as z from drone data+-offset.

Bounding solid.

Camera is somewhere in this region.

Fig: Detector. Showing radial direction, camera position, and direction camera is pointing.

Example of a Correctly labelled image

Z-Coordinate correction

Narrowing search volume

- $\mathrm{b}=\mathrm{p} 1=$ density of calibrated water(salt)/density of hk-water.

Can be easily derived assuming that the pressure sensor Is reading the pressure correctly.

Fig: depth correction. $Z_{h k \text {-water }}=c+b^{*} Z_{\text {calibrated-water }}$

Try to relate offset of brightest point from the center to predict if the camera was pointing at angle less than or more than radially outward direction.

The brightest spot should have been in the center if the camera was pointing radially outward.

See the pattern?

- Now match the pattern.
- Best match pattern is correct label(actual camera position).

Introduction to camera (simply $\mathrm{R}^{3}->\mathrm{R}^{2}$ transformation)

Since camera intrinsic matrix doesn't change, if we know rotation and translation vector for certain orientation and position of the camera, we know everything.

Rotation matrix.

Ponts expressed in the wond frame \mathbf{X}_{w} are projected into the image plane $[u, v]$ using the perspective projection model II and the camera infinsic parameters matix \mathbf{A}

