Analysis of Alpha Particle Quenching in SNO+ Liquid Scintillator

Speaker:Anthony AllegaEmail:aallega@snolab.caSupervisors:Dr. Christine KrausDr. Ryan Bayes

Event: CASST Conference

Date: Aug-23-2021

Session #5

SNOLAB Site

- Located 2 km underground in the Creighton mine near Sudbury, ON, Canada.
- Deep underground for reduction of background radiation.
- Focuses on research in neutrinos and dark matter.

SNO+ Experiment

- Probe the nature of neutrinos.
- 6m radius acrylic vessel (AV) containing LAB as scintillator.
- PMTs are mounted on an 8.5m radius geodesic sphere.
- Entire structure suspended in 30m tall cavity containing ultra-pure water.

Solar Neutrino Spectra + Backgrounds

4

Solar Neutrino Spectra + Backgrounds

SNO+ Backgrounds

SNO+ Backgrounds

Organic Scintillation

Mechanism | Light Yield | Quenching

Organic Scintillation Process

 π -electrons are excited upon interactions with ionizing radiation.

Organic Scintillation Process

 π -electrons are excited upon interactions with ionizing radiation.

Excitation releases light.

Organic Scintillation Process

 π -electrons are excited upon interactions with ionizing radiation.

Excitation releases light.

Scintillation light is measured by the PMTs.

Spectral Modelling

Monte Carlo | Data Selections | Modelling

Monte Carlo Simulation

- Decay is monoenergetic.
- Various effects cause smearing in the energy spectrum.
- Gaussian mean is taken to be the emitted decay energy.

$$f(x;\mu,\sigma,\lambda) = \int_0^\infty dx' A_0 \exp\left(-\frac{x-x'}{\lambda}\right) B_0 \exp\left(-\frac{(x'-\mu)^2}{2\sigma^2}\right)$$

$$= C_0 \exp\left(\frac{x-\mu+\sigma^2/\lambda}{\lambda}\right) \times \operatorname{erfc}\left(\frac{x-\mu+\sigma^2/\lambda}{\sqrt{2}\sigma}\right)$$

²¹⁰Po Spectrum

$$f(x;\mu,\sigma,\lambda) = \int_0^\infty dx' A_0 \exp\left(-\frac{x-x'}{\lambda}\right) B_0 \exp\left(-\frac{(x'-\mu)^2}{2\sigma^2}\right)$$

$$= C_0 \exp\left(\frac{x-\mu+\sigma^2/\lambda}{\lambda}\right) \times \operatorname{erfc}\left(\frac{x-\mu+\sigma^2/\lambda}{\sqrt{2}\sigma}\right)$$

Parameter	Selection
Radial Position:	$R_{xyz} < 5200 \text{ mm}$
Vertical Position:	\mathcal{Z} > 700 mm (partial fill phase)
Nhits:	80 < Nhits < 160
Event Fitter:	partialFit == 1

Mean Nhits [Data]: 127.9 ± 0.03 Mean Nhits [MC]: 135.5 ± 0.02 ΔNhits: 7.6 ± 0.04

Motivating ²¹⁴BiPo Data Selections

Thorium

- $4000 \text{ ns} < \Delta t < 1e6 \text{ ns}$
- $\Delta r < 1000 \text{ mm}$
- partialFit == 1
- $R_{xyz} < 5600 \text{ mm}$
- $\chi > 700 \text{ mm}$
- 150 < Nhits < 350

Motivating ²¹⁴BiPo Data Selections

- 4000 ns $< \Delta t < 1e6$ ns
- $\Delta r < 1000 \text{ mm}$
- partialFit == 1
- $R_{xyz} < 5600 \text{ mm}$
- $\chi > 700 \text{ mm}$
- 150 < Nhits < 350

²¹⁴Po Spectrum (Aug – Oct 2020 Data)

$$f(x;\mu,\sigma,\lambda) = \int_0^\infty dx' A_0 \exp\left(-\frac{x-x'}{\lambda}\right) B_0 \exp\left(-\frac{(x'-\mu)^2}{2\sigma^2}\right)$$

$$= C_0 \exp\left(\frac{x-\mu+\sigma^2/\lambda}{\lambda}\right) \times \operatorname{erfc}\left(\frac{x-\mu+\sigma^2/\lambda}{\sqrt{2}\sigma}\right)$$

Mean Nhits [Data]: 219.6 ± 0.3 Mean Nhits [MC]: 227.3 ± 0.03 Δ nhits: 7.7 ± 0.3

²¹⁴Po Background – Δt and Δr

Time Difference Between Prompt and Delayed Events. Cut: (4000, 1e6) ns **Position Difference Between Prompt and Delayed Events.** Cut: < 1000 mm

Now for ²¹²BiPo Data Selections...

Th 14.1Billion

²²⁸ Ra 5.7Yr

horium

- $400 \text{ ns} < \Delta t < 800 \text{ ns}$
- $\Delta r < 1000 \, \mathrm{mm}$
- partialFit == 1
- $R_{xyz} < 5600 \text{ mm}$
- $\chi > 700 \text{ mm}$
- 230 < Nhits < 430

X-Z Event Projection

Now for ²¹²BiPo Data Selections...

- $400 \text{ ns} < \Delta t < 800 \text{ ns}$
- $\Delta r < 1000 \text{ mm}$
- partialFit == 1
- $R_{xyz} < 5600 \text{ mm}$
- $\chi > 700 \text{ mm}$
- 230 < Nhits < 430

²¹²Po Spectrum (Aug – Oct 2020 Data)

$$f(x;\mu,\sigma,\lambda) = \int_0^\infty dx' A_0 \exp\left(-\frac{x-x'}{\lambda}\right) B_0 \exp\left(-\frac{(x'-\mu)^2}{2\sigma^2}\right)$$

$$= C_0 \exp\left(\frac{x-\mu+\sigma^2/\lambda}{\lambda}\right) \times \operatorname{erfc}\left(\frac{x-\mu+\sigma^2/\lambda}{\sqrt{2}\sigma}\right)$$

Mean Nhits [Data]: 272.2 ± 3 Mean Nhits [MC]: 281.5 ± 0.03 Δ nhits: 9.3 ± 3

Summary

- Exponentially modified Gaussian model agrees well to both data and simulation for the backgrounds studied, with the differences between data and simulation quantified.
- Able to see the ²¹²Po spectrum, even with low statistics!
- These results will be used as part of a global calibration for the SNO+ detector, which include externally deployed calibration sources and internal backgrounds.
- Results can also be used to fine-tune MC framework to data in scintillator.

Acknowledgements

Thank you to Dr. Christine Kraus, Dr. Ryan Bayes and the Laurentian & Queen's research groups for supervising me throughout this project and providing invaluable support.