Development of In Gas Laser Ablation Source

<u>Minya Bai</u>, Laura Gonzalez Escudero Supervisors: Thomas Brunner, Christopher Chambers

Neutrinos and Neutrinoless Double Beta Decay $(0\nu\beta\beta)$

Known

- Neutrinos are weakly interacting particles
- Neutrinos have mass

Postulated

- Are neutrinos their own antiparticle?
- Can neutrinos violate lepton number conservation?

Search for $0\nu\beta\beta \rightarrow$ lepton number violating decays

The nEXO Experiment

- A proposed neutrinoless double beta decay $(0\nu\beta\beta)$ detector
 - 5 tonne LXe enriched with 90%
 ¹³⁶Xe
 - Time Projection Chamber (TPC) for 3D event reconstruction

Image taken from https://nexo.llnl.gov/nexo-overview

CAP 2021; C. Chambers

What is Laser Ablation?

• Focused laser to release ions from surface of target

Advantages?

- Provides a low-rate source of a specific ion
- Allows for synchronization with rest of ion optics
- We have experience with laser ablation in vacuum

Thesis, M.M.Peregrina

IGLAS Chamber

- Two parallel copper plates separated by ~ 0.8mm
- Chamber at vacuum or filled with gas
- Different metals for calibration

Multi-metal targets with new target design

Old Targets Design

New Targets Design for In-Gas Laser Ablation Source (IGLAS)

IGLAS - Measurement

- 1 lons are ablated off the surface of the target
- 2. Apply voltage bias to drift ions from target to ion collector
- 3. Signal read as ion current on collector and target

lon

Triggering Measurements

- Readings from Keithley Picoammeter are triggered by TTL signal from Q1 laser
- At each position, laser is fired a set number of times and the readings are loaded into a buffer
- All readings in buffer are returned and buffer is cleared before moving to next position

Moving Forwards

Demonstrate in-vacuum operation works in new setup (Scan multi-element targets for calibration)

Increase pressure inside IGLAS chamber

Barium ablation in xenon gas at 10bar pressure

Test different gases (helium, argon, xenon)

Experimental Controls

Measure ion current signals as a function of different parameters:

- 1) Pressure up to 10 bar
- 2) Different gas environments
- 3) Electric field dependence
- 4) Multi-material targets
- 5) Different laser wavelengths (266 nm, 355 nm, 532 nm, 1064 nm)
- 6) Laser energy and repetition rate up to 10 Hz
- 7) Laser spot size on target

Laser Fluence

Conclusion

- Laser ablation has been tested in vacuum in IGLAS and measured ion currents up to 80 nA
- Making progress towards scanning in an in-gas laser ablation source for the Ba-tagging setup

349nm laser on copper target in vacuum taken by Melissa Medina Peregrina.

Acknowledgements

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

CANADA FOUNDATION FOR INNOVATION

FONDATION CANADIENNE POUR L'INNOVATION

Fonds de recherche sur la nature et les technologies Québec 🏘 🛊

BNL

Thank You for Listening!