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Motivation

Stability of black holes: Given the initial perturbation, will the perturbation remain
bounded at all times?

[Regge, Tullio and Wheeler, John A. (Phys. Rev 1957]

Gravitational wave Astronomy: To extract information of the black hole like their
mass, charge, and spin.
Tests of General Relativity: Different modes should give us a stringent test for GR.
Using different techniques within GR independently to test GR.
Confirmation of BHs: Detection of these frequencies also confirm the existence of
the BHs.
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Inspiral-Merger-Ringdown

Ringdown phase is well described by perturbing the background black hole
spacetime by any test field.
It is assumed that this model is valid only when black hole is very close to reaching
its equilibrium.
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The aim of the project

What will happen to the black hole when it is perturbed by an external field?
A perturbed black hole will go through quasinormal modes ringdown. The aim of the
project was to calculate these quasinormal modes.
As a toy model I will treat scalar fields as an external test field.
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Scalar Perturbation-Introduction

Klein Gordan Equation for massless scalar field in spherically symmetric and static
background

�φ = 0

Decomposing the function as

φ(t , r , θ, φ) =
∞∑
`=0

∑̀
m=−`

Ψs=0
`m (r)

r
P`m(θ)e−iωteimφ

By using tortoise coordinate r∗ defined as dr
dr∗ ≡ (fh)1/2, we get the Schrodinger

equation:

d2Ψs=0
I

dr2
∗

+
[
ω2 − V0

]
Ψs=0

I = 0

where effective potential reads as V0 ≡ f `(`+1)
r2 + (fh)′

2r
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Boundary Conditions

Effective Potential V Schw
0 =

(
1− 2M

r

)(
`(`+1)

r2 + 2M
r3

)
Horizon: Classically, nothing should leave horizon, therefore

φ ∼ e−iω(t+r+)

Infinity: Discarding unphysical waves entering from infinity.

φ ∼ e−iω(t−r+)

Now our aim is to solve for ω in the radial equation satisfying the above boundary
conditions and show that the eigen functions are damped in nature.
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WKB Method

For any massless spin (s=0 scalar, s=1 Electromagnetic, s=2 Gravitational):

d2Ψs
`

dr2
∗

+ Q(r∗)Ψs
` = 0

where Q(r∗) =
[
ω2 − Vs

]
, Vs = f

(
Λ
r2 + 2β

r3

)
, β = 1− s2, λ = `(`+ 1)

Validity: Due to boundary conditions, the transmitted and reflected waves should
have comparable amplitudes. Therefore, turning points degenerate or very close to
each other.
In middle region, expanding Q about maxima and using boundary conditions, we get

n +
1
2

= − iQ0(
2Q′′0

)1/2

Using the above result to get

ω2
n = i

(
n +

1
2

)√
2Q′′0 +

(
1− 2M

r0

)(
Λ

r2
0

+
2βM

r3
0

)
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Application

M = nM�
For gravitational field, s=2

l n Mω0 + iMωi
2 0 0.373162− 0.0892174i

1 0.346017− 0.274915i
2 0.302935− 0.471064i
3 0.247462− 0.672898i

3 0 0.599265− 0.0927284i
1 0.582355− 0.281406i
2 0.5532− 0.476684i
3 0.515747− 0.677429i

4 0 0.809098− 0.0941711i
1 0.796499− 0.284366i
2 0.773636− 0.478974i
3 0.743312− 0.6783i

For scalar field in RN spacetime assuming q = 0.5

l n Q Mω0 + iMωi
0 0 0.5 0.247376− 0.249018i

1 0.5 0.887109− 0.922351i
2 0.5 1.37073− 1.41889i
3 0.5 0.142375− 0.863119i

1 0 0.5 0.26604− 0.145384i
1 0.5 0.700671− 0.66721i
2 0.5 0.992813− 0.97177i
3 0.5 0.0604634− 0.758635i

Ashley Chraya Black hole Perturbation August 24, 2021 9 / 12



Tests of GR

Converting into Physical units

ν =
32.26

n
(Mω0) kHz

τ =
n · 0.4937 · 10−5

(Mωi)
s

Test no-hair theorem and stability of black holes
In eikonal limit, we can relate QNM to lyapunov exponent

ωQNM = Ωc l + i
(

n +
1
2

)
|λ|

where λ is the Lyapunov exponent (measures of the rate at which the trajectories
diverge) of the null orbit.
Ωc is the orbital angular velocity of the null orbit.
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Thank You

Email: ashleychraya@gmail.com
Website: ashleychraya.github.io
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