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New STEAM developments — what Is driving us

Capability to simulate all HL-LHC superconducting magnet circuits

Offer simulation tools to the community

Adapt tools to the needs of HFM (High Field Magnet) studies

Include all physics relevant for quench protection transients

Include all physics relevant for powering transients
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New STEAM developments

£\ LEDET 2D

A\ LEDET 3D

OrCAD psp|CE frequency-domain models

cadence

OrCAD pspICE component library

cadence

A o Python-based Jupyter/SWAN notebooks




LEDET 2D — Quench heater with dedicated 1D thermal diffusion model
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Multiple layers of insulation between QH and conductor can be defined
Thermal diffusion solved with a semi-implicit 1D model

E. Ravaioli, "Improved quench heater model in STEAM-LEDET", edms 2320265



https://edms.cern.ch/document/2320265

LEDET 2D - Persistent currents (aka magnetization, hysteresis) -1
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* The persistent currents in the superconducting filaments are calculated semi-analytically for arbitrary
powering transients. On the right-hand plot, the average “magnetization” due to persistent currents is shown

E. Ravaioli, "Persistent-currents magnetization in STEAM-LEDET", edms 2418186
A. K. Holk Pedersen, E. Ravaioli, "Implementation of persistent-currents feature in STEAM-LEDET models of LHC magnets", edms 2613180
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https://edms.cern.ch/document/2418186
https://edms.cern.ch/document/2613180

LEDET 2D - Persistent currents (aka magnetization, hysteresis)
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Effect of persistent currents on the differential inductance included (this effect is typically ~20% at low current)

Hysteresis loss in each strand included

E. Ravaioli, "Persistent-currents magnetization in STEAM-LEDET", edms 2418186
A. K. Holk Pedersen, E. Ravaioli, "Implementation of persistent-currents feature in STEAM-LEDET models of LHC magnets", edms 2613180
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https://edms.cern.ch/document/2418186
https://edms.cern.ch/document/2613180

LEDET 2D+1D - 2D model plus analytical quench propagation
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 The standard 2D model is enhanced by introducing the fraction of longitudinally quenched conductor, which
scales the resistance of each turn. Adiabatic quench propagation velocity is re-calculated at each time step.
 Quench propagation between electrically consecutive turns is included

M. Janitschke, E. Ravaioli, "STEAM LHC Circuit Library: Generation and validation of the RCBY circuit models", edms 2454471
M. Janitschke et al., "A simplified approach to simulate quench development in a superconducting magnet", IEEE Trans. on Appl. SC, 2021 .



https://edms.cern.ch/document/2454471
https://ieeexplore.ieee.org/document/9356128

LEDET 3D - Full-scale magnet quench model in 3D -1
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E. Ravaioli, "Simulation of the 3D magnet quench process with the finite-difference method in STEAM-LEDET", edms 2454468
O. Tranum Arnegaard, E. Ravaioli, "3D simulations of quench transients in the MQSX magnet using STEAM-LEDET", edms 2613181
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https://edms.cern.ch/document/2454468
https://edms.cern.ch/document/2613181

LEDET 3D — Full-scale magnet quench model in 3D -2
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Thermal diffusion solved in 3D

The ends geometry is not the real one,
but comes with simplifications

2D magnetic field is extended to the
entire turn (field in the ends is wrong!)
Adaptive time stepping can be enabled
Inter-filament coupling loss are included,
but their effect on differential inductance
is not included

Quench heaters and CLIQ not included

A LEDET 2D model can be transformed in
a 3D model by adding a entries to the
input file

Typical simulation time <1 hour

E. Ravaioli, "Simulation of the 3D magnet quench process with the finite-difference method in STEAM-LEDET", edms 2454468
O. Tranum Arnegaard, E. Ravaioli, "3D simulations of quench transients in the MQSX magnet using STEAM-LEDET", edms 2613181



https://edms.cern.ch/document/2454468
https://edms.cern.ch/document/2613181

LEDET 3D — Full-scale magnet quench model in 3D
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v" 3D model of a self-protecting magnet coil during a quench discharge
v Coupling loss is included in the simulation
v Simulation time <1 h

E. Ravaioli, "Simulation of the 3D magnet quench process with the finite-difference method in STEAM-LEDET", edms 2454468

O. Tranum Arnegaard, E. Ravaioli, "3D simulations of quench transients in the MQSX magnet using STEAM-LEDET", edms 2613181
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https://edms.cern.ch/document/2454468
https://edms.cern.ch/document/2613181

LEDET — Better support for solenoid geometry

Peak temperature distribution during the transient
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A dedicated flag allows enabling the solenoid geometry, which affects how voltages to ground are calculated, how
3D geometry is generated, and the plot labels




PSPICE — Automatic generation of frequency-domain models

Group simulation original
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A. Frem Wolstrup, "Automatic frequency-domain modelling of SC electromagnets used in the LHC machine at CERN", edms 2455852
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https://edms.cern.ch/document/2455852

PSPICE component library — Current-dependent inductance

B

wJ

e This component can be used to simulate more
realistically the powering of an electrical circuit

* |trelies on a look-up table that defines the
magnet inductance as a function of its current

* Many such components can be used in the
same electrical model (for example in case of
magnets in series)
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D. Delkov, "PSPICE simulation of electrical transients in the SIS100 dipole circuit"
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Notebooks — Automated generation of COSIM models

PSPICE netlist
generated with SING

LEDET model
generated with notebook

COSIM configuration
options

Python API

Much more information in the dedicated talk by M. Janitschke at this workshop

COSIM model

* Folder structure

* Input files

* Configuration files
 Readytorun!




Example of a complex COSIM model — 600 A undulator magnet -1
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Figure 4: MU-L4 Simplified circuit layout modified oo,
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Circuit current measured by the DCCT

N -
fa v This circuit was simulated with a COSIM model coupling a PSPICE
electrical circuit and a LEDET model of coils + parallel resistors
v" Note that the parallel resistors also act as quench heaters

From LHC Project Report 894
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Example of a complex COSIM model — 600 A undulator magnet -2
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v" To simulate this transient, the software must include quench development, thermal diffusion from the
resistors to the turns and among turns, longitudinal quench propagation, mutual coupling between coils and
parallel resistors, coupling loss,...
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Example of a complex COSIM model — 600 A undulator magnet -3
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v' Simulating this transient offers additional insights. In this example, we see the time and cause of quench for
each turn, which brings additional understanding of the magnet+circuit behavior
v In this example, coupling loss is responsible for quenching ~30% of the turns




Work is not over yet...
We're constantly developing new features!

If you have ideas, wishes & feedback,
we're interested!

C w https://espace.cern.ch/steam/

steam-team@cern.ch
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