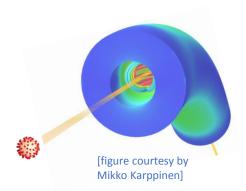
Analysis of thermal transients in a superconducting combined function magnet for hadron therapy gantry using a SIGMA-generated COMSOL model

On 13th October 2021

Vittorio Ferrentino TE-MPE-PE

Many thanks to Emmanuele Ravaioli, Mikko Karppinen, Haris Kokkinos, Dimitri Delkov, Lorenzo Bortot

Goal

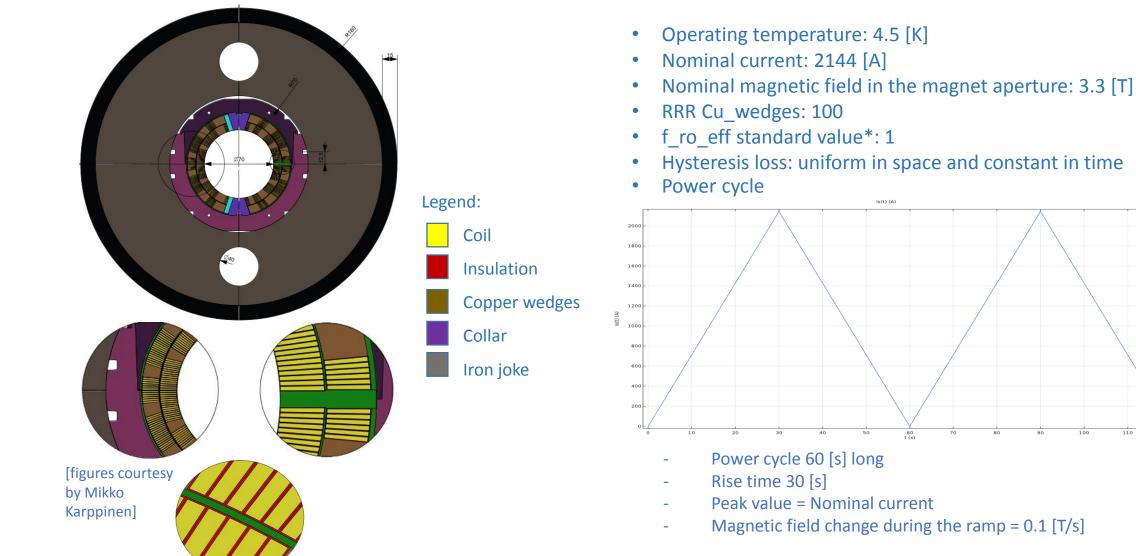

Powering cycles simulations: assess the impact of transitory losses and cooling features on the thermal transient. Demonstrate that the proposed design does not result in excessive coil temperature (above 6 [K]) during powering, even under very conservative assumptions.

Software used

- **STEAM-SIGMA** to generate the COMSOL magnet model
- **COMSOL© Multiphysics v5.3a** for the powering cycles simulations and thermal transient analysis

Contents

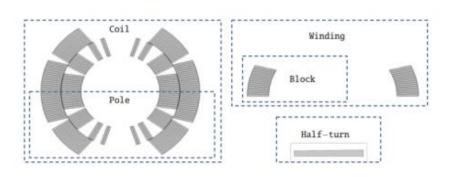
- Magnet and power cycle features and the SIGMA-built model
- Cases analyzed and assumptions
- Reference case analysis
- Worst case: higher losses
- Conclusions

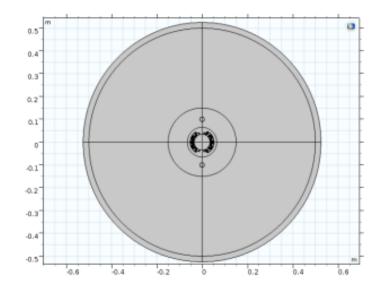


Vittorio Ferrentino TE-MPE-PE 2nd STEAM Workshop

Magnet cross-section and features

*f_ro_eff is the effective transverse resistivity between the filaments

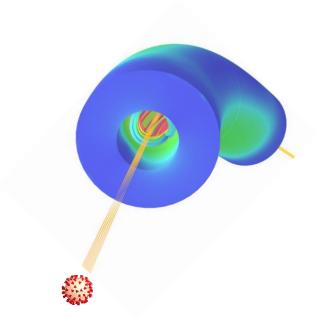

Vittorio Ferrentino TE-MPE-PE


2nd STEAM Workshop

- STEAM-SIGMA is a Java-written tool which automatically generates complex magnet models.
- Possibility of **inserting material property functions in the COMSOL model**, which are imported in the COMSOL model as *.dll files* (dynamically linked libraries) provided as a compiled C-code. An external database for the iron BH-curve is available as a *.txt file*.
- Geometrically, **STEAM-SIGMA is based on basic geometrical shapes** (points, straight lines, arcs, ellipse sectors, circumferences), which allow to build more complex geometries. The geometrical classes related to the coil of the magnet are built by **block** (hyper-area divided into half-turns), **winding** (array of HyperAreas, composed by two stacks of adjacent half-turns in a magnet coil having opposite current directions), **pole** (a set of windings forming a magnet pole) and finally the **coil**, defining the magnet coil of a single cross-section.
- Running the STEAM-SIGMA model, the COMSOL model of a specific magnet is generated as well as the magnetic field maps.

Vittorio Ferrentino TE-MPE-PE

2nd STEAM Workshop



- Magnet and power cycle features

and the SIGMA-built model

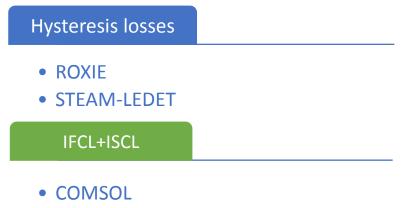
- Cases analyzed and assumptions
- Reference case analysis
- Worst case: higher losses
- Conclusions

[figure courtesy by Mikko Karppinen]

Vittorio Ferrentino TE-MPE-PE

2nd STEAM Workshop

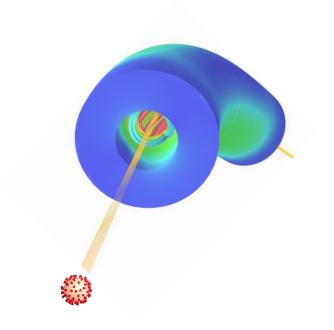
STEAM



Vittorio Ferrentino TE-MPE-PE 2nd STEAM Workshop

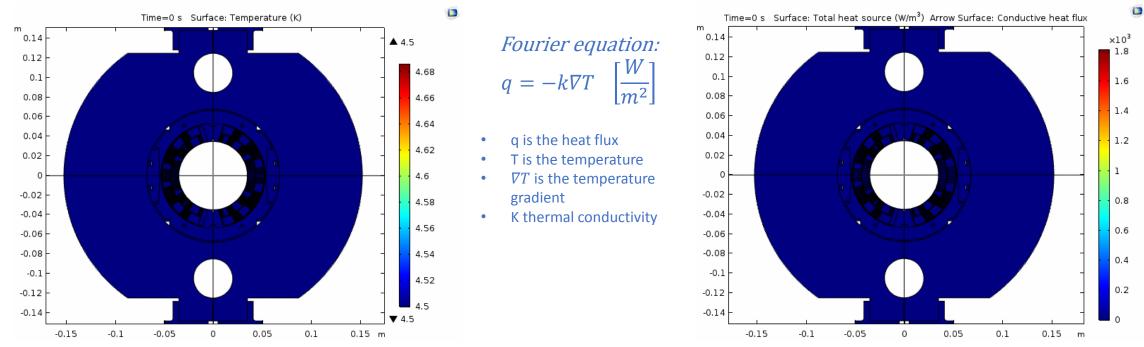
Simulations	IFCL+ISCL	Hysteresis loss	Cu_wedg loss	Coil – collar contact	Yoke – collar contact
1 Reference case	Reference → f_ro_eff=1	Reference \rightarrow 201.8 $\left[\frac{W}{m^3}\right]$	Reference → RRR_Cu_wedg es = 100	Reference → Therm_cond_gr_ins ul = SIGMA	Reference \rightarrow Thermal resistance = 12.56 $\left[\frac{Km^2}{W}\right]$
2. Worst case: higher losses	Reference* 3	Reference*4	Reference	Reference/4	Reference

• STEAM-LEDET


2nd STEAM Workshop

Vittorio Ferrentino TE-MPE-PE

- Magnet and power cycle features
 - and the SIGMA-built model
- Cases analyzed and assumptions
- Reference case analysis
- Worst case: higher losses
- Conclusions


[figure courtesy by Mikko Karppinen]

Reference case: thermal transient in the magnet

Simulations	IFCL+ISCL	Hysteresis loss	Cu_wedg loss	Coil – collar contact	Yoke – collar contact
1 Reference case	Reference → $f_ro_eff=1$	Reference $\rightarrow 201.8 \left[\frac{W}{m^3} \right]$	Reference → RRR_Cu_wedges = 100	Reference → Therm_cond_gr_insul = SIGMA	Reference \rightarrow Thermal resistance = 12.56 $\left[\frac{Km^2}{W}\right]$

2D temperature profile

At the beginning the heat is deposited just in the coil and collar, then it propagates towards the external part of the magnet and the temperature starts to increase there (slightly in the yoke). The two holes are the thermal sinks for the magnet and they basically take all the heat generated in it, remaning at the initial temperature. Arrows directions and size give heat flux direction and amplitude.

Vittorio Ferrentino TE-MPE-PE 2nd STEAM Workshop


13 October 2021

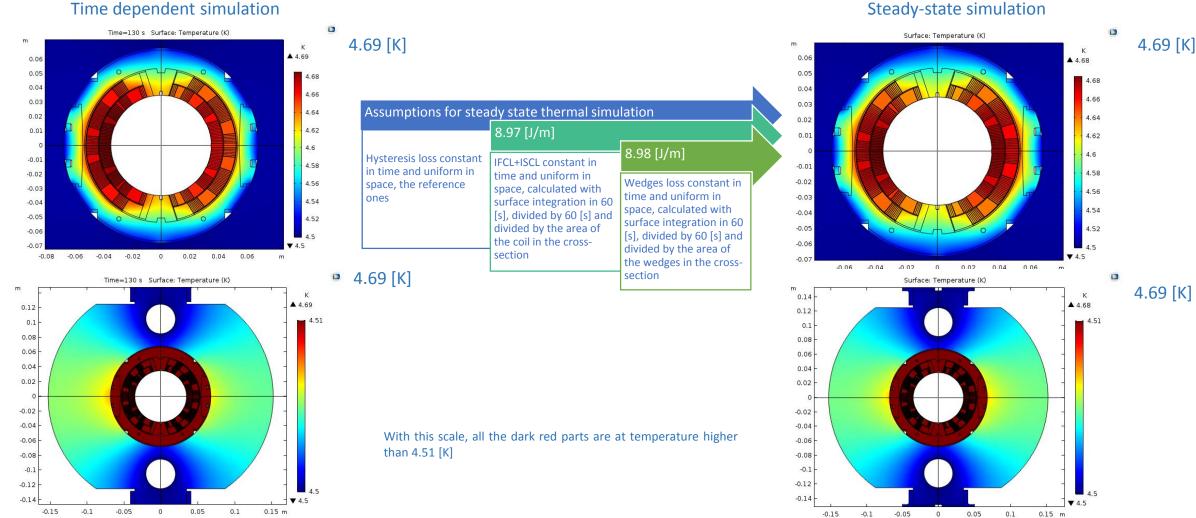
Heat flux and heat source

Reference case: temperature vs time in the hottest points

In 900 [s] (15 power cycles) the temperature enhancement is very low, about 0.1 [mK].

However, considering a continuous operation of the magnet, this enhancement could create problems, if it never stops. Indeed, if the yoke continues heating up, the cooling effect for the coil and collar will be lower

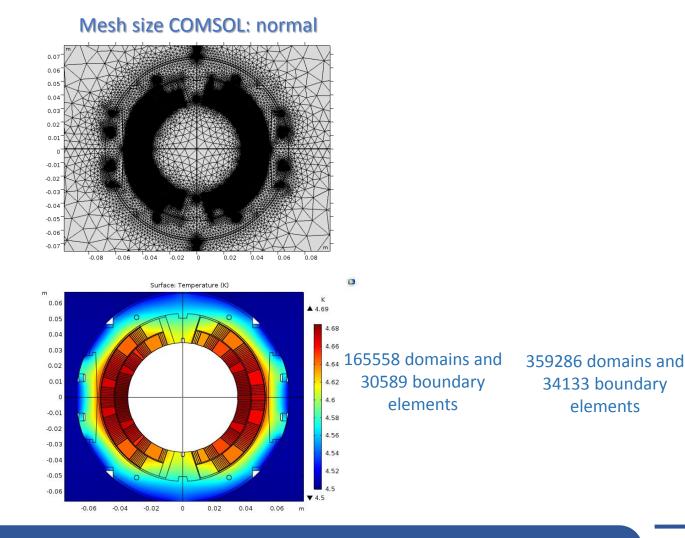
.. To be sure that sooner or later the system reaches a steady-state condition, a solution is to perform a steady-state simulation.


Vittorio Ferrentino TE-MPE-PE

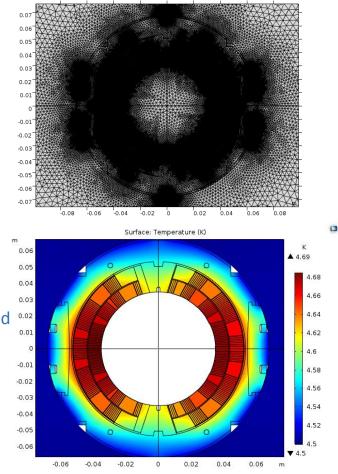
2nd STEAM Workshop

Steady-state thermal simulation

The steady-state thermal simulation provides exactly the same results of the time dependent simulation. This result supports the assumptions done. **The system reaches a regime.**

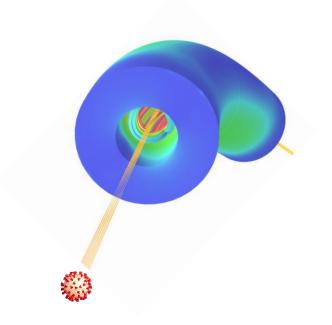

Vittorio Ferrentino TE-MPE-PE

2nd STEAM Workshop



All the results shown are valid if they do not change by scaling (or changing) the mesh. In order to prove it, let's set an extremely fine mesh.

Mesh size COMSOL: extremily fine


Vittorio Ferrentino TE-MPE-PE

2nd STEAM Workshop

- Magnet and power cycle features and the SIGMA-built model
- Cases analyzed and assumptions
- Reference case analysis
- Worst case: higher losses
- Conclusions

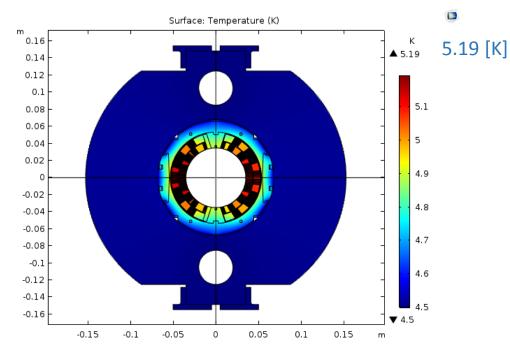
[figure courtesy by Mikko Karppinen]

2nd STEAM Workshop

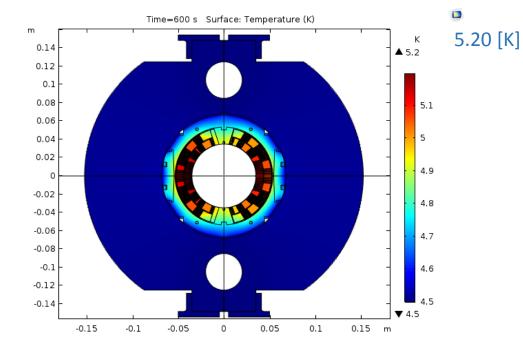
S	Simulations	IFCL+ISCL	Hysteresis loss	Cu_wedg loss	Coil – collar contact	Yoke – collar contact
2.	Worst case	Reference*3	Reference*4	Reference	Reference/4	Reference

The temperature at the end of the first power cycle (60 [s]) is still increasing, then it reaches a regime. The transient is slower in this case and the peak temperature is 5.2 [K], higher than the reference case. This makes sense for the assumptions done about the losses.

Vittorio Ferrentino TE-MPE-PE 2nd STEAM Workshop

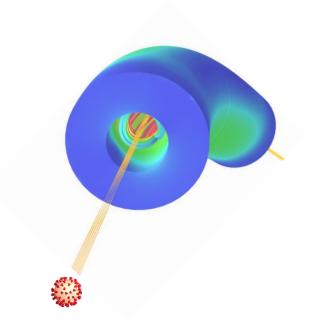


Worst case analysis: Steady-state thermal simulation


Simulations	IFCL+ISCL	Hysteresis loss	Cu_wedg loss	Coil – collar contact	Yoke – collar contact
2. Worst case	Reference*3	Reference*4	Reference	Reference/4	Reference

Steady-state thermal simulation

The difference is of 0.01 [K]


Vittorio Ferrentino TE-MPE-PE

2nd STEAM Workshop

- Magnet and power cycle features
- Cases analyzed and assumptions
- Reference case analysis
- Worst case: higher losses
- Quench protection
- Conclusions

[figure courtesy by Mikko Karppinen]

Vittorio Ferrentino TE-MPE-PE

2nd STEAM Workshop

Conclusions

Powering and thermal transient analysis

Software used: COMSOL© Multiphysics v 5.3a

For powering, in both cases analyzed (reference case and higher losses case) the temperature is below 6 [K] and the steady-state thermal simulations prove that the magnet reaches a regime in a time window comparable to the one of a time-dependent simulation.

Therefore, these simulations in COMSOL show that the magnet actually does not need any special feature to improve the cooling

COMSOL - Powering	Peak temperature [K]	Time to go to regime [s]	Losses in the coil (IFCL, ISCL, hysteresis) [W]	Losses in copper wedges [W]
1.Reference case *	4.69	≅ 60	1.02	0.26
2.Worst case	5.20	≅120	3.75	0.26

To add ... Scaling from Discorap gives a total of roughly **0.88 W** for eddy current (collars, collaring keys, iron) and hysteresis (iron) losses in the cold mass for the power cycle

vittorio.ferrentino@cern.ch

12 November 2020

Thank you for your

attention

Vittorio Ferrentino TE-MPE-PE 2nd STEAM Workshop