

## Thermal analysis of quenchheater heating stations using STEAM-BBQ

#### 2<sup>nd</sup> STEAM Workshop – 10.2021

Marvin Janitschke (TU Berlin)



Acknowledgements

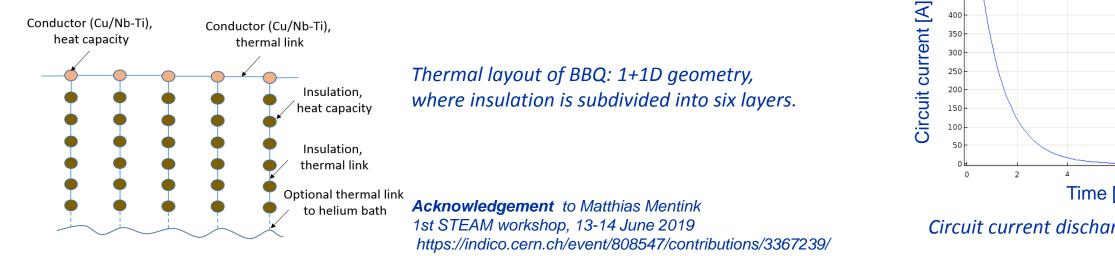
Special thanks to: E. Ravaioli, M. Wozniak, F. Murgia and the STEAM team

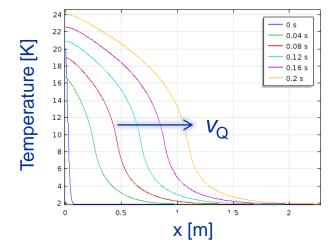


14/10/2021

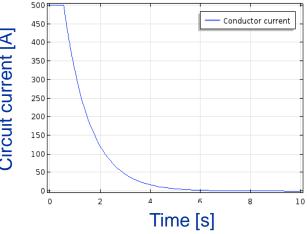
Marvin Janitschke | Thermal analysis using STEAM BBQ

## STEAM – BBQ


#### FEM-based COMSOL simulation model for:


Calculation of quench-related conductor properties

- Quench propagation velocity •
- Development of voltage after quench origination for quench detection
- Hotspot temperature as a function of quench integral

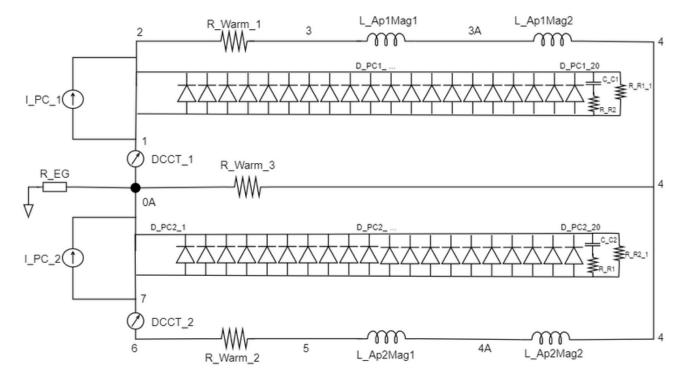

For circuit with known discharge quench integral:

- Time-dependent current (Exponential decay after quench detected)
- Time-dependent hotspot temperature





*Temperature-development along length of conductor* 




Circuit current discharge



### Simulation of quench transients in nested circuits

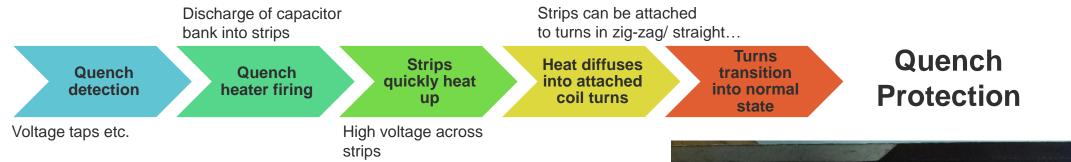
#### - LHC IPQ circuits are the Individually Powered Quadrupoles in the matching sections



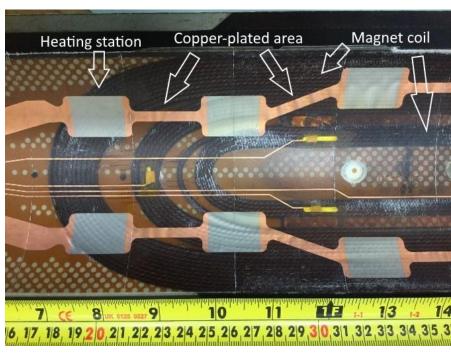
#### 2x power supplies

2x different complex superconducting magnets 3x branches of which two contain each one apperture of the two powered magnets 2x complex superconducting magnets

→ Unbalanced currents in the two power supplies cause complex transients due to the strong coupling of the apertures


→ Validation was conducted in STEAM-COSIM [PSPICE+LEDET]

F. Murgia, "Multiphysics Modelling of the LHC Individually Powered Quadrupole Superconducting Circuits" https://cds.cern.ch/record/2729131/files/CERN-THESIS-2020-102.pdf




## **Quench heater on superconducting magnets**

- Quench heater (QH) are stainless steel strips, attached to the outside of superconducting coils



- In order to limit the voltage, that needs to be applied, some parts of the strips are plated with copper
  - $\rightarrow$  Stainless steel areas remain as heating stations
- From the parts attached to the heating stations, the normal zone is propagating along the turn between heating stations and to other turns



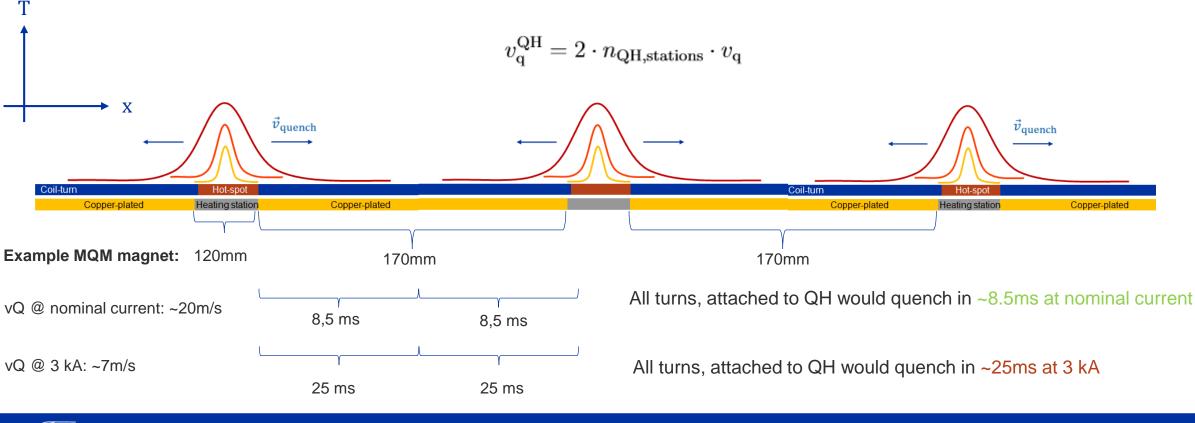


## **Quench propagation velocity**

- Usually: Magnets protected with QH are quenched so fast, that a 2D model is sufficient for example for most magnets at nominal current
- But: For lower current level, the effect of the quench propagation velocity can impact the discharge

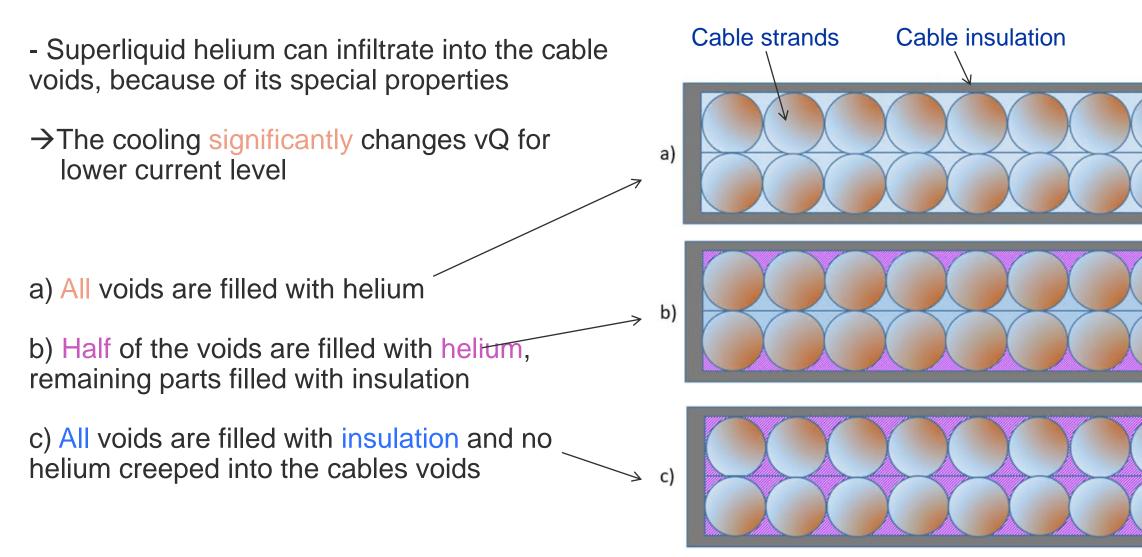
#### Quench propagation velocity $v_Q$ in STEAM-LEDET

- Calculated using an analytic equation
- Scales the electrical resistance of each turn, based on the quenched fraction
- Assumes adiabatic conditions (cooling is neglected)


$$v_{\rm q} = \frac{J}{\overline{c}} \left( \frac{pk}{T_{\rm cs}/2 + T_{\rm c}/2 - T} \right)^{1/2}$$

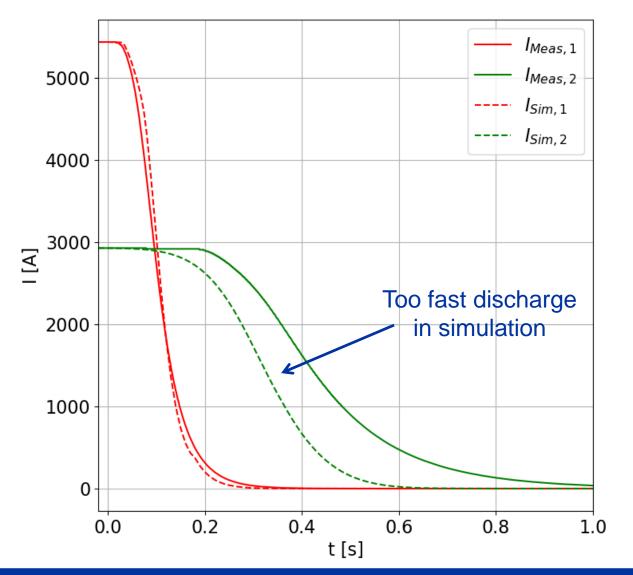
[\*] H. ten Kate, H. Boschman and L. Van de Klundert, "Longitudinal propagation velocity of the normal zone in superconducting wires", *IEEE Trans. Magn.*, vol. 23, no. 2, pp. 1557-1560, Mar. 1987




# Effect of heating station on the quench propagation velocity

- After the QH firing, the normal zone is propagating from each heating station into both, longitudinal directions






## Infiltrated helium in superconducting cables





#### **Problem: Unbalanced currents**



## Typical transient in the IPQ branches (Measurements vs. Simulation)

-Parameter sets of these magnets, were validated in STEAM-LEDET and STEAM-COSIM

- Very good agreement for the higher current case, poor agreement for lower current level

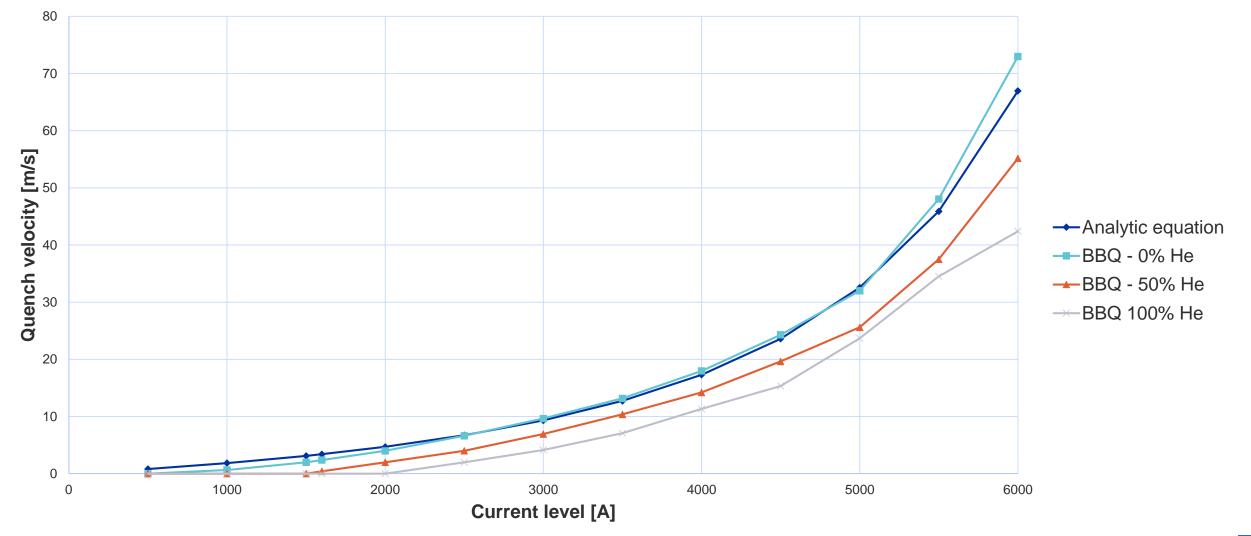
#### → Effect has to be current dependent

- Using the quench velocity in STEAM-LEDET, we assume **adiabatic conditions** 

- $\rightarrow$  Acceptable for fast transients at high current
- → Cooling and its effect on the quench propagation might play a significant role on lower current level

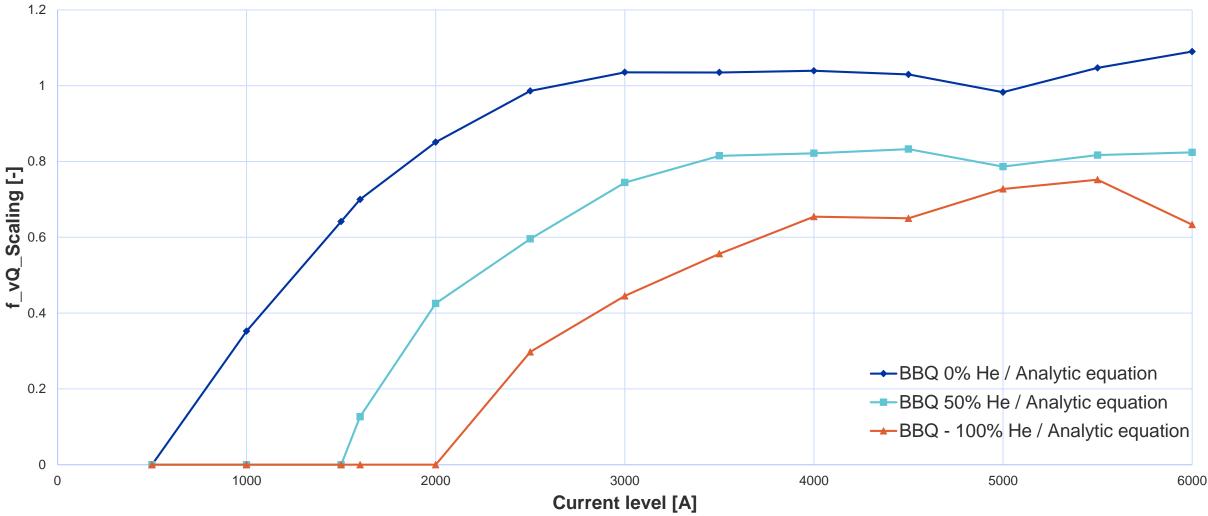
→ Thermal analysis in STEAM-BBQ




#### **BBQ: User-interface – Modelling infiltrated He**

| ** Name                 | Expression                             | Value                                          | Description                                                                                                                                                             |                                     |              |           |                                                                           |
|-------------------------|----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|-----------|---------------------------------------------------------------------------|
| 10                      | 1600 [A]                               | 1600 A                                         | Initial current                                                                                                                                                         |                                     |              |           |                                                                           |
| lenBusbar               | 3.4 [m]                                | 3.4 m                                          | Busbar length                                                                                                                                                           |                                     | affect of he |           |                                                                           |
| RRR                     | 130                                    | 130                                            | Residual Resistivity Ratio of Copper                                                                                                                                    | To model the                        | effect of ne | num, we   |                                                                           |
| BPerl                   | 1.19938e-3 [T/A]                       | 0.0011994 kg/(s <sup>2</sup> ·A <sup>2</sup> ) | Magnetic field scaling coefficient                                                                                                                                      | in /deereese                        |              |           |                                                                           |
| fNbTi                   | 0.363636363636364                      | 0.36364                                        | Fraction of superconductor                                                                                                                                              | in-/decrease                        | the conduct  | .or       |                                                                           |
| meshSize                | 2e-3 [m]                               | 0.002 m                                        | Size of mesh                                                                                                                                                            | diameter ee                         | anidarad for | acalina   |                                                                           |
| ABusbarNoInsul          | 7.4356E-6 [m^2]                        | 7.4356E-6 m <sup>2</sup>                       | Busbar cross-section (excluding insulation)                                                                                                                             | diameter, coi                       | Isidered for | coomig    |                                                                           |
| thinsul                 | 1e-9 [m]                               | 1E-9 m                                         | Insulation thickness                                                                                                                                                    |                                     |              |           |                                                                           |
| perInsul                | pi*(DConductor+thInsul)                | 0.027143 m                                     | Insulation perimeter                                                                                                                                                    |                                     | Fraction of  | Value [m] | Comment                                                                   |
| Alnsul                  | perinsul*thinsul                       | 2.7143E-11 m <sup>2</sup>                      | Insulation thickness (approximate formula?)                                                                                                                             |                                     |              |           | Gomment                                                                   |
| VThreshold              | 100e-3 [V]                             | 0.1 V                                          | Quench detection voltage                                                                                                                                                |                                     | strands in   |           |                                                                           |
| tValidation             | 0.01 [s]                               | 0.01 s                                         | Quench validation time (after detection of voltage ex                                                                                                                   | ceeding Vinreshold)                 | He-bath      |           |                                                                           |
| tauDecay                | 0.815[1/s]                             | 0.815 1/s                                      | Time constant of the exponential current decay follow                                                                                                                   | wing quench detection.              | ne-bain      |           |                                                                           |
| IDesign                 | 5400 [A]                               | 5400 A                                         | Design current, used for parameter sweeps                                                                                                                               |                                     | 0.0/         | 0.00207   |                                                                           |
| BBackground             | 0 [T]                                  | 0 T                                            | Background magnetic field                                                                                                                                               |                                     | 0 %          | 0,00307   | $D_{\text{Conductor}} = \sqrt{A_{\text{Cable,Bare}} \cdot \frac{4}{\pi}}$ |
| TInitMax                | 20 [K]                                 | 20 K                                           | Maximum value of the gaussian profile of the initial t                                                                                                                  | emperature                          |              |           | γ                                                                         |
| TlnitOp                 | 1.9 [K]                                | 1.9 K                                          | Minimum (operating) value of the gaussian profile of                                                                                                                    | the initial temperature             | 100 %        | 0.01728   | $D_{\text{Conductor}} = D_{\text{Strands}} \cdot n_{\text{Strands}}$      |
| sigmaTlnit              | 0.02 [m]                               | 0.02 m                                         | Variation of the gaussian profile of the initial tempera                                                                                                                | ture                                |              | 0,01120   | $D$ Conductor $= D$ Strands $\cdot n$ Strands                             |
| muTlnit                 | 0 [m]                                  | 0 m                                            | Average value of the quassian profile of the initial pea                                                                                                                | ak temperature in the busbar (chang |              |           |                                                                           |
| p1                      | 0.02*lenBusbar                         | 0.068 m                                        | First point to calculate quench velocity (should be far                                                                                                                 | from the initial quench spot in ord | 50 %         | 0,00864   | $D_{\text{Conductor}} = D_{\text{Conductor, 100\%}}/2$                    |
| p2                      | 0.1*lenBusbar                          | 0.34 m                                         | Second point to calculate quench velocity (should be                                                                                                                    | far from the initial quench spot in |              |           |                                                                           |
| TVQRef                  | 8 [K]                                  | 8K                                             | Reference temperature for the quench velocity calcul                                                                                                                    | ation                               |              |           |                                                                           |
| TLimit                  | 400 [K]                                | 400 K                                          | Temperature limit for thermal calculations determined by validity range of material properties (once reached, the heat source dies out exponentially)                   |                                     |              |           |                                                                           |
| aFilmBoilingHeliumll    | 200[W/(m^2*K)]                         | 200 W/(mi-K)                                   | Coefficient a for the film boiling calculation in Helium II                                                                                                             |                                     |              |           |                                                                           |
| aKap                    | 200                                    | 200                                            | Coefficient a for the Kapitza cooling calculation in Helium II                                                                                                          |                                     |              |           |                                                                           |
| nKap                    | 4                                      | 4                                              | Exponent for the Kapitza cooling calculation in Helium II                                                                                                               |                                     |              |           |                                                                           |
| QKapLimit               | 35e3[W/m^2]                            | 35000 W/m <sup>2</sup>                         | Limit of heat transfered by the Kapitza cooling in Helium II (once reached transition to another cooling regime takes place)                                            |                                     |              |           |                                                                           |
| TKapLimit               | (QKapLimit/aKap+TlnitOp^nKap)^(1/nKap) | 3.703                                          | Temperature limit for the Kapitza cooling in Helium II                                                                                                                  |                                     |              |           |                                                                           |
| adiabaticZoneLength     | 0 [m]                                  | 0 m                                            | If withCooling=1, this parameter gives the busbar length over which no cooling to the bath is present, with the remainder of the busbar receiving cooling from the bath |                                     |              |           |                                                                           |
| withCoolingToBath       |                                        | 1                                              | For withCooling = 0, no cooling to the bath is considered. For withCooling = 1, Kapitza cooling and film-boiling (dependent on interface temperature) are considered.   |                                     |              |           |                                                                           |
| DConductor              | 8.64e-3[m]                             | 0.00864 m                                      | Conductor diameter, excluding the insulation                                                                                                                            |                                     |              |           |                                                                           |
| jointLength             | 20e-3[m]                               | 0.02 m                                         | Length of the joint, which has additional resistivity. Note that the cross-sectional area of the joint may be doubled under 'userInput_ABusbarNoInsul'                  |                                     |              |           |                                                                           |
| Rjoint                  | 0[ohm]                                 | 0Ω                                             | Joint resistance                                                                                                                                                        |                                     |              |           |                                                                           |
| jointResistancePerMeter | Rjoint/jointLength                     | 0 Ω/m                                          | Additional resistance per meter over the joint                                                                                                                          |                                     |              |           |                                                                           |
| ,<br>symmetryFactor     | 2                                      | 2                                              | For a quench starting on the edge of the busbar, symmetryFactor = 1 gives a one-way quench, and symmetryFactor = 2 gives a two-way quench, relevant for VBusbar         |                                     |              |           |                                                                           |
| · ·                     |                                        |                                                |                                                                                                                                                                         |                                     |              | - ,,      |                                                                           |
|                         |                                        |                                                |                                                                                                                                                                         |                                     |              |           |                                                                           |

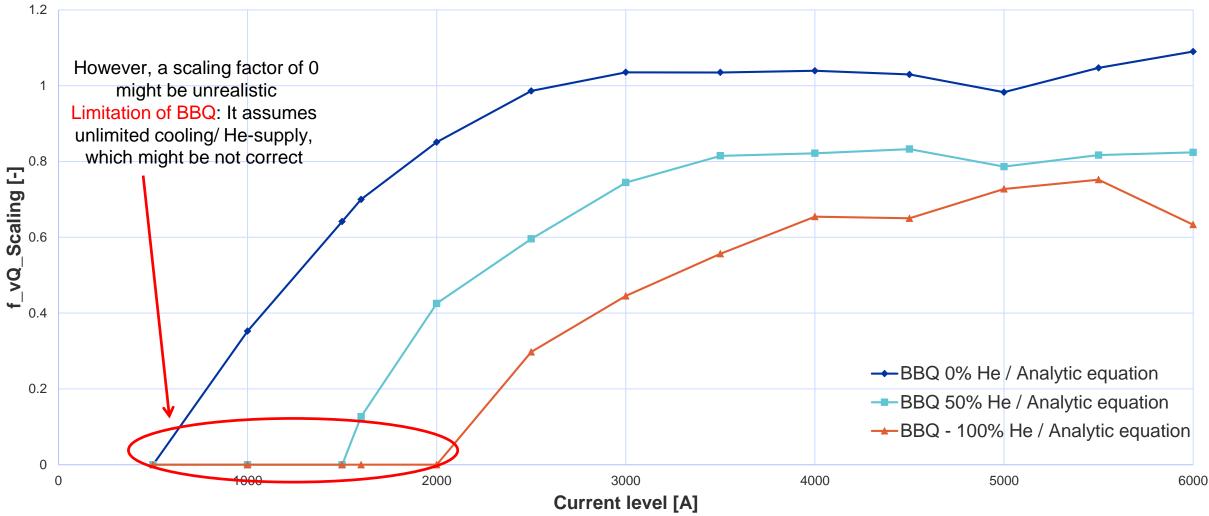



### **Calculated quench propagation velocities**

**Quench velocity vs. Current level** 



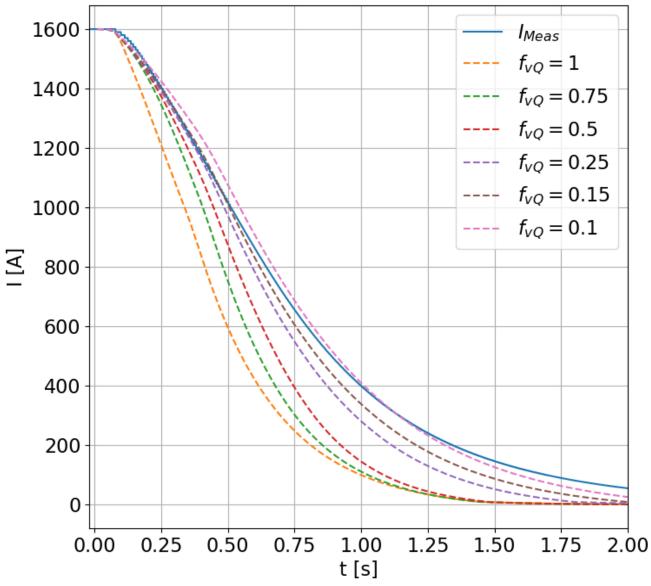



#### Scaling factor for the quench velocity



→ Cooling in the cable voids can significantly decrease the quench velocities, especially on lower current level

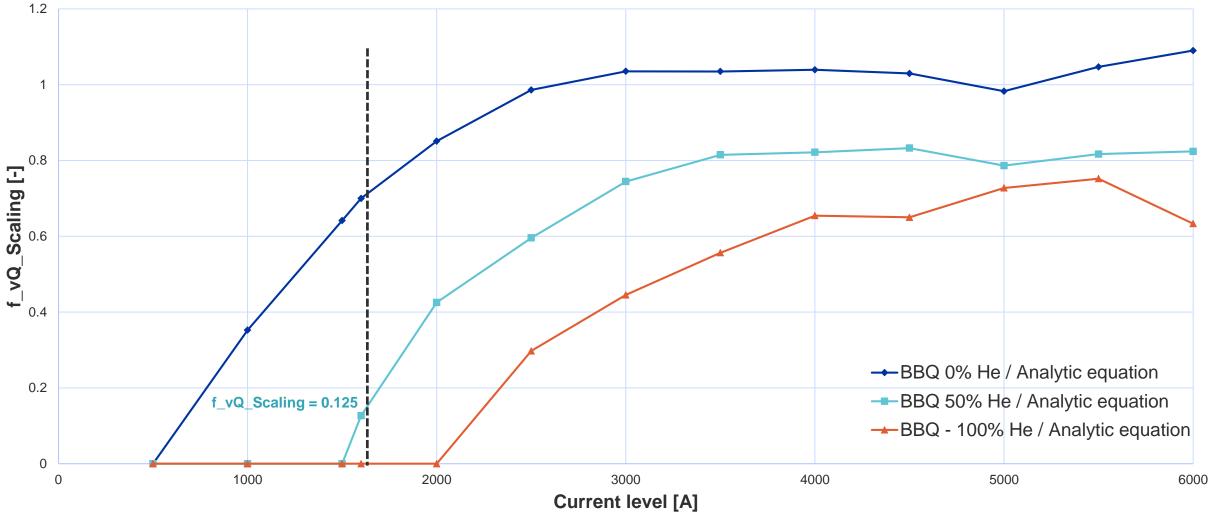



#### Scaling factor for the quench velocity



→ Cooling in the cable voids can significantly decrease the quench velocities, especially on lower current level




#### **Comparison of simulations including scaling factor**



→ Quench propagation velocity needs to be decreased by a factor  $\sim 1/8$ 



#### Scaling factor for the quench velocity



→ Applying the BBQ scaling factor at low current level, leads to the best fit in STEAM-LEDET



#### Conclusion

- During the validation of IPQ circuits, an "unknown" current level dependent effect was noticed

- At lower current level, the calculation of quench velocity, assuming adiabatic condition, does not lead to a good agreement with measurements

- STEAM-BBQ was used to better estimate the quench velocity on lower current level

 $\rightarrow$  Different scaling factors for 0, 50 and 100% infiltrated helium in the cable voids were deduced

- Applying these scaling factors to the STEAM-LEDET and STEAM-COSIM simulation lead to a better fit at lower current level

