




STEAM

WELCOME

2nd STEAM workshop 11th – 15th October 2021

https://indico.cern.ch/event/1060073

Mariusz Wozniak on behalf of the STEAM team

Dimitri Datskov, Marvin Janitschke, Emmanuele Ravaioli, Ola Tranum Arnegaard, Arjan Verweij, Mariusz Wozniak

These slides are based on Arjan Verweij slides from the 1st STEAM Workshop from 2019

Aim of the workshop

- ➤ Give participants information on STEAM architecture, physics, tools, use cases, notebooks, ...(day 1)
- > Forum for STEAM users to showcase their work (3x20 min on, day 2, 3, 4)
- Hands-on oportunity to use STEAM and time to ask questions about using the tools and developing new models (day 1, 2, 3, 4)
- Discuss future plans for STEAM (day 5)

But also:

- Build-up a network of people working on similar issues
- Get feedback from participants for improvements
- See if participants are interested to integrate in-house written software to STEAM (mutual interest)
- Increase the number of users
- Get users involved in the validation

Why STEAM project started?

- To have a set of well-documented and validated tools:
 - for simulating various transients in the LHC and future accelerators (switch openings, converter switch-off, short-to-ground, inter-turn short, CLIQ discharge, ...)
 - for co-simulating circuit, magnet, PC regulation, quench protection, ...
- To increase the accuracy of several types of simulations, which is important for the designs of Nb₃Sn magnets for HL-LHC and FCC which have small margins.
- To avoid that tools/models are abandoned/forgotten as soon as the programmer leaves CERN.

What is STEAM?

Framework to simulate *transient effects* in the *SC circuits and magnets* of the LHC, future upgrades (HL-LHC), accelerator designs studies (FCC), and other SC magnets/circuits.

- Application driven!!!
- Variety of tools (both commercial and in-house), each with its own features and advantages.
- Maintainable and long-term ⇒ well-written and documented.
- Attractive possibility to co-simulate two or more tools.
- Tested, cross-checked, and validated (up to a certain level).

Transients:

- Quench (training, beam-induced, triggered by QH/CLIQ, quench back)
- Fast Power Abort (converter switch-off and EE activation, voltage waves)
- Shorts (coil-to-ground, coil-to-heater, inter-turn, double short, arcing)
- ELQA tests (FTM, HiPotting, diode tests)
- Quench Detection response to the above

Tue 12/10 Wed 13/10 Thu 14/10 Agenda LEDET 09:00 COSIM **ProteCCT** Mon 11/10 Notebooks LEDET 12:00 **COSIM** Notebooks **ProteCCT**

Velocine

| 150 | Querch protection of HEPOtion magnet using STEAM LEDET | Xaber Series | 1500 | 3D magnet querch simulations using STEAM LEDET | Ola 7/anum Arropea | 1500 | Implementing HTS in STEAM LEDET from test coils to full-scale systems | Daniel During | 1500 |

https://indico.cern.ch/event/1060073/timetable/#all

Repeated

Sessions for all

sessions

Participants

Last Name	First Name	Institution	Last Name	First Name	Institution
1Davis	Daniel	ASC-NHMFL-FSU	25Caiffi	Barbara	INFN Genova
2AVRONSART	Julien	Brookhaven National Laboratory	26 Pampaloni	Alessandra	INFN Genova
3Ben Yahia	Anis	Brookhaven National Laboratory	27 Hou	Zhilong	Institute of high energy physics
4 Joshi	Piyush	Brookhaven National Laboratory	28 menglin	WANG	Institute of High Energy Physics
5Babouche	Romain	CEA - IRFM	29Kang	Rui	Institute of High Energy Physics, CAS
6NICOLLET	Sylvie	CEA, IRFM	30Chen	Yuquan	Institute of Modern Physics,
7 Gorit	Quentin	CEA/ IRFM	31 tong	yujin	Institute of Modern Physics, Chinese Academy of Sciences
8Delkov	Dimitri	CERN	32Zheng	Shijun	Institute of Modern Physics, Chinese
9Ferrentino	Vittorio	CERN	33 Suzuki	Kento	KEK
10 Mentink	Matthias	CERN	34Barthlott	Dominic	KIT
11 Ravaioli	Emmanuele	CERN	35Barthlott	Dominic Thomas	KIT
12 Tranum Arnegaard	Ola	CERN	36Shen	Tengming	Lawrence Berkeley National Lab
13 Verweij	Arjan	CERN	37 Teyber	Reed	LBNL
14 Vitrano	Andrea	CERN	38 Li	Chunyi	member
15Wozniak	Mariusz	CERN	39 Murgia	Federica	N/A
16 Janitschke	Marvin	CERN, TU Berlin	40 Liu	Dong	Tampere University
17Schnaubelt	Erik	CERN, TU Darmstadt	41 Salmi	Tiina	Tampere University
18 Garcia Matos	Jesus Angel	CIEMAT	42Sotnikov	Dmitry	Tampere University
19Sarasola	Xabier	EPFL-SPC	43Otin	Ruben	UK Atmomic Energy Authority
20 Marinozzi	Vittorio	FNAL	44Zhang	Heng	UK Atomic Energy Authority
21 Raginel	Vivien	GSI Helmholtzzentrum für Schwerionenforschung GmbH	45Bender	Lennard	University of Applied Sciences (DE)
22 Ze	feng	IHEP	46 Pepitone	Kevin	Uppsala University
23Levi	Filippo	INFN	47Barna	Daniel	Wigner Research Centre for Physics
24Prioli	Marco	INFN - Milano			

Final remarks

- > STEAM is a framework that has already proven to be very useful for explaining events in the LHC, and for studying HL-LHC and FCC magnet circuits.
- > STEAM is not a final product but will evolve over time (new tools, additional physics, more validations).
- ➤ Integration of tools from users could give a lot of synergy for the user due to existing circuit and magnet model generators, co-simulation, material database, ...
- ➤ Although initially set up for *transients* in *accelerator magnets*, STEAM could handle steady-state, and be applied to other superconducting magnets.
- The software is offered free of charge; however, to obtain a copy you need to sign our user agreement (available at: https://edms.cern.ch/document/2024516).
- ➤ Do not forget all the time/effort put in, so, in papers and presentations (partially) based on STEAM results, please acknowledge our work and add proper references.

Abbreviations

CLIQ: Coupling Loss Induced Quench system

EE: Energy Extraction (system)

FCC: Future Circular Collider

FPA: Fast Power Abort

HL-LHC: High Luminosity upgrade of the LHC

MB: Main dipole magnet in the LHC

MIITs: Integral of I²dt during the current discharge

QDS: Quench Detection System

QH: Quench Heater

QPS: Quench Protection system

PC: Power Converter

RB: Main dipole circuit in the LHC

RQD/F: Main defocusing/focusing quadrupole circuit in the LHC

See also: https://espace.cern.ch/steam/_layouts/15/start.aspx#/SitePages/Naming%20conventions.aspx

